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ABSTRACT 

 

High-resolution soil moisture dataset is crucial for various 

application such as meteorology, climatology, hydrology and 

agriculture. Active microwave remote sensing sensors like 

radar provide earth observations at high spatial resolutions. 

This study based on physical model simulations (Advanced 

Integral Equation Method, AIEM, and Water Cloud Model, 

WCM) combined with the Artificial Neural Networks to 

investigate the potential of the ALOS-2 and Sentinel-1 radar 

images for estimating soil moisture at high spatial resolution. 

The results shows that the statistical parameters of the 

relationships between estimated and measured soil moisture, 

expressed in terms of R, bias, and RMSE, are 0.834~0.861, 

0.005~0.037m3m-3 and 0.047~0.062m3m-3 for ALOS-2, and 

0.733~0.896, 0.018~0.028m3m-3 and 0.032~0.070m3m-3, for 

Sentinel-1. In densely vegetated area, RMSE significant 

increases, due to the limited penetration ability of L and C 

bands in high vegetation areas.  

Index Terms— soil moisture, ALOS-2, Sentinel-1, ANN 

 

1. INTRODUCTION 

 

Soil moisture is the key parameter in the processes of 

water and energy interchange between the atmosphere and 

land surface [1]. High spatial resolution of soil moisture have 

a widespread application in meteorological climate forecast, 

hydrological modeling and agricultural irrigation [2-4]. 

Microwave remote sensing provides a flexible alternative to 

capture regional soil moisture. Passive microwave remote 

sensing with satellite-based retrieval can provide soil 

moisture data sets for large areas. However, it have coarse 

spatial resolution (10km~40km) and limited in many 

applications. Active microwave remote sensing like 

spaceborne radar provide observations at high spatial 

resolutions and the backscattering coefficient is sensitivity to 

soil moisture, especially at low microwave frequencies[1, 5]. 

The possibility of using radar to obtain soil moisture 

estimate at high spatial resolution has been widely studied in 

the past. Several algorithms are available for soil moisture 

retrievals using radar, including statistical methods [6, 7],  

 
Change detection [8, 9]  and forward model inversion models 

(Artificial Neural Network (ANN), Bayes’ approach) [10, 11] 

and so on. However, the retrieval methods mentioned above 

are mainly applied to bare or sparsely vegetated surfaces. For 

densely vegetated areas, the retrieval methods need further 

improvements. 

Given the high spatial sampling and the operational 

configuration of Sentinel-1 (C-band) and Advanced Land 

Observing Satellite-2 (ALOS-2, L-band), they are expected 

to make significant contributions to the operational 

monitoring of dynamic hydrological processes. In this work, 

the research for the retrieval of soil moisture has been focused 

on the potentials of Sentinel-1 and ALOS-2. The predictions 

of the ANN were slightly more suitable than the other 

methods for generating maps in reasonable time [4]. 

Therefore, in this paper, firstly, we built the simulated 

database based on the Advanced Integral Equation Method 

(AIEM) and Water Cloud Model (WCM). Secondly, with the 

result of the sensitivity analysis, we selected the simulated 

data and used the ANN to get optimal training results. Finally, 

basing on Sentinel-1 and ALOS-2 SAR backscattering 

coefficient, vegetation index from Sentinel-2 and Landsat-8 

and training results, we retrieved the soil moisture on site at 

30m resolution. The validation results can be used as a 

reference for soil moisture inversion methods in the future. 

 

2. STUDY AREA AND DATA 

 

2.1. Location/Environment Conditions 

 

Genhe area has a cold and humid temperate forest climate and 

a continental monsoon climate at the northernmost and 

coldest area in Inner Mongolia. An in situ measurement 

experiment was conducted in Genhe area (in Figure 1) and it 

as part of a network of experiments designed to enhance the 

dynamic analysis and modeling remotely sensed information 

for complex land surfaces[12].  
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Figure 1. Land cover in Genhe area 

 

2.2. Data 

 

2.2.1. Soil moisture network 

As shown in Figure 1, the soil moisture in situ sites are 

located on both sides of Genhe area (50.1°-50.6° N, 120.5°-

121.0° E). The land cover data in Figure 1 is from 

GlobeLand30 (http://glc30.tianditu.com/index.html) with 

30m spatial resolution. Soil moisture and soil temperature 

were continuously measured via Em50 data collection system 

with EC-5TM probes (Decagon Devices, Inc., Washington, 

USA) from 15 July 2015 to 23 September 2016. The depth of 

soil moisture and soil temperature observation is 3 cm, 5 cm 

and 10 cm with every 30 minutes. Considering the 
penetration power at C band and L band, we have selected the 

soil moisture and soil temperature at 0-5 cm soil depth to 

validate the soil moisture retrievals.  

 

2.2.2. Sentinel-1  

The Sentinel-1 mission is the European Radar Observatory 

for the Copernicus joint initiative of the European 

Commission and the European Space Agency (ESA). The 

payload is C band Synthetic Aperture Radar (SAR), the 

repeat cycle at Equator with one satellite is 12 days[13]. This 

study used Level 1 ground range detected high-resolution 

standard products with VV and VH polarization in 

interferometric wide swath mode from Copernicus Open 

Access Hub. The details as shown in Table 1. All of the 

Sentinel-1data was pre-processed using the SNAP and 

Sentinel-1 Toolbox. Considering the spatial resolution of 

other satellite data, the last step is resampling to 30m. 

 

2.2.3. ALOS-2 

The ALOS-2 follow on mission from the "DAICHI", it was 

developed by Mitsubishi Electric Corporation under contract 

to JAXA. ALOS-2 launched on 24 May 2014, revisit time is 

14 days. The state of the art Phased Array type L-band 

Synthetic Aperture Radar-2 (PALSAR-2) aboard ALOS-2, 

which is an active microwave radar using the 1.2GHz 

frequency range [14]. This study used Level 1.5 data with fine 

mode dual polarization (HH, HV) products with right looking 

from Earth Observation Data Utilization Promotion Platform. 

All of the ALOS-2 data were pre-processed using ENVI and 

SNAP Toolbox like Sentinel-1. The date of the selected 

ALOS-2 data corresponds to Sentinel-1. 
 

2.2.4. Sentinel-2 

The Copernicus Sentinel-2 mission comprises a constellation 

of two polar-orbiting satellites placed in the same sun-

synchronous orbit, Sentinel-2A (launched on 23 June 2015) 

and Sentinel-2B (launched on 07 March 2017). It have high 

revisit time (10 days) at the equator with one satellite [15]. 

Sentinel-2 has a high spatial resolution,  therefore, this work 

selected Sentinel-2A Level 1C data (from Copernicus Open 

Access Hub) to calculate NDVI with formula: (Bnad8-

Ban4)/(Band8+Band4). It should be noted that all of the 

Sentinel-2A data was pre-processed with atmospheric 

correction and resampling 30m using the Sentinel-2 Toolbox. 

Details of the data as shown in Table 1. 

 

2.2.4. 5) Landsat 8 

Landsat 8 was developed as a collaboration between National 

Aeronautics and Space Administration (NASA) and the U.S. 

Geological Survey (USGS), and it was launch on 11 February 

2013. The satellite carries the Operational Land Imager (OLI) 

and the Thermal Infrared Sensor (TIRS) and has a 16-day 

repeat cycle [16]. Sentinel-2 has no data at Genhe area in 

2015, therefore, we chose Landsat 8 to calculate vegetation 

index in 2015. This work used Landsat 8 OLI/TIRS C1 Level 

2 data from USGS to calculate 30m NDVI with formula: 

(Bnad5-Ban4)/(Band5+Band4). Details of the data as shown 

in Table 1.  
 

Table 1. Satellite data information 

Satellite Acquisition  

date 

Spatial 

resolution 

resampling 

Sentinel-1  07/18 2015 

09/18 2015 

07/12 2016 

09/22 2016 

10m 30m 

ALOS-2 07/172015 

09/25 2015 

07/15 2016 

09/23 2016 

10m 30m 

Landsat 8 

(band5, band4) 

07/05 2015 

09/07 2015 

30m 30m 

Sentinel-2 

(band8, band4) 

07/19 2016 

09/30 2016 

10m 30m 

 

3. METHODS 

ANN can significantly reduce the computational time during 

the prediction phase provided a sufficiently robust and 

representative set of samples is used during the training[4]. 

AIEM improves the calculation accuracy of scattering 

coefficient by keeping the absolute phase term in Greens 
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function, which was neglected by IEM on bare surface[17]. 

Water Cloud Model (WCM), which is characterized by a 

rather simple implementation, simulates the backscattering of 

vegetated surfaces as a function of the soil backscattering and 

the vegetation index [18]. In view of these advantages, this 

study selected the AIEM and WCM models, together with 

ANN method for estimating surface soil moisture from 

Sentinel-1 and ALOS-2 images. The flow chart of soil 

moisture retrieval is represented in Figure 2. 

 

 
Figure 2. The flow chart of soil moisture retrieval algorithm 

(RMSH: Root Mean Square Height; LC: correlation length; PWC: 
Plant Water Content) 

 

 As shown in Figure 2, PWC is calculated from NDVI data as 

follows[19]: 

      
2

max min

min

(1.9134* 0.3215* )+

stem factor*
1

PWC NDVI NDVI

NDVI NDVI

NDVI

 





                       (1) 

 

NDVI is derived from Sentinel-2 and Landsat 8; stem 

factor is associated with different land cover types, the value 

of stem factor is derived from [19]. NDVImax is the annual 

maximum NDVI at a given location. NDVImin is to the 

annual minimum NDVI at a given location [19]. 

 

4. RESULTS  

 

The results of soil moisture retrievals through ALOS-2 and 

Sentinel-1 data are compared with the in situ soil moisture 

data in Figure 3 and Figure 4. The results shows that the 

statistical parameters (R, bias, and RMSE) of ALOS-2 soil 

moisture retrieval in low and high vegetated areas are 0.861 / 

0.005m3m-3 / 0.047m3m-3, 0.834 / 0.037m3m-3 / 0.047m3m-3, 

respectively. The R, bias, and RMSE of Sentinel-1 soil 

moisture retrieval in low and high vegetated areas are 

0.896/0.018m3m-3/0.032m3m-3, 0.733/0.028m3m-3/0.07m3m-3, 

respectively.  

It can be observed that the accuracy of ALOS-2 and 

Sentinel-1 soil moisture retrievals in low vegetated area 

(grass, shrub, crop) is higher than the one retrieved in densely 

vegetated area (birches and larix gmelinii), and that the 

accuracy of Sentinel-1 soil moisture retrieval in high 

vegetated areas is lower than the one of ALOS-2. This is due 

to the higher frequency of Sentinel-1 (C-band) which is lees 

able to penetrate the densely vegetated surfaces with respect 

to the longer wavelength of ALOS-2 (L band). However, the 

accuracy of Sentinel-1 soil moisture retrieval in low 

vegetation area is higher than ALOS-2. These results also 

show that both C band and L band can satisfy the inversion 

accuracy of surface soil moisture in low vegetated areas and 

L band does not show significant advantages with respect to 

Sentinel-1 in Genhe. 

 

   
(a) Low vegetation                          (b) High vegetation 

Figure 3. Validate the ALOS-2 soil moisture retrievals 

 

   
     (a) Low vegetation                      (b) High vegetation 

Figure 4. Validate the Sentinel-1 soil moisture retrievals 

 

5. CONCLUSION AND DISCUSSION 

 

This paper is based on WCM and AIEM simulations, and 

applies ANN method to Sentinel-1 and ALOS-2 SAR data 

and retrieve the on-site soil moisture at 30m spatial resolution. 

The results indicate that the accuracy of ALOS-2 and 

Sentinel-1 soil moisture retrievals on low vegetated lands is 

higher than the one obtained on high vegetated lands, and that 

the accuracy of ALOS-2 soil moisture retrieval on densely 

vegetated lands is higher than the one of Sentinel-1. These 

results are related to the better performance of ALOS-2 

wavelength and polarization mode, whereas the penetration 

ability of Sentinel-1 C-band in forest areas is limited. 

Actually, forestland is mainly covered by artificial forest 

farm and the percentage of virgin forest is not very high. 

Meanwhile, the precision of soil moisture retrieval is affected 
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by the accuracy of the simulated data and by the results of 

ANN training. Moreover, the fact that Landsat 8 and 

Sentinel-2 images are not completely cloud-free is also a 

factor influencing the retrieval results. This paper only inverts 

the soil moisture of the site; however, in future works, we will 

plan to optimize the method and the simulated data set to 

improve the accuracy of soil moisture retrievals and obtain 

soil moisture maps. 
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