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ABSTRACT 

 

One of the key variables describing global seasonal snow 

cover is snow water equivalent (SWE). The GlobSnow-2 

SWE product is widely used in in many research areas due 

to the high accuracy level and a long historical record (1979 

to the present) in Globally. The satellite data used in 

GlobSnow-2 are mainly from the Special Sensor 

Microwave/Imager (SSM/I) and Special Sensor Microwave 

Imager Sounder (SSMIS). However, there is no launching 

plan for these sensors in the future. To ensure a continuation 

of GlobSnow-2 product, this paper assesses the consistency 

of SWE estimates between the Microwave Radiation Imager 

(MWRI) and SSMIS in GlobSnow-2 retrieval scheme. The 

analysis is conducted in three regions (Finland, Russia and 

China) over the Northern Hemisphere. The results show that 

the SWE difference between MWRI and SSMIS is small and 

even can be negligible. This study provides a scientific basis 

for treating the MWRI dataset as one continuous record. 

 

Index Terms— Snow Water Equivalent, GlobSnow-2, 

FY-3D/MWRI, DMSP/SSMIS, Consistency 

 

1. INTRODUCTION 

 

Snow water equivalent (SWE), representing the amount of 

water stored in the snowpack, is a key variable for 

hydrological applications, weather prediction, climate 

change analysis and land surface process simulations [1]. 

Satellite passive microwave (PMW) data are widely used for 

the retrieval of SWE because of a wide swath, independent 

of weather, and a response to the presence of dry snow on 

land. In addition, there exists a long historical record of 

spaceborne PMW data dating back to 1978, allowing us to 

study seasonal snow changes. There are serval entities that 

use the spaceborne PMW brightness temperature (TB) data 

to produce SWE products. A technique that assimilates in 

situ snow depth observations with microwave emissions by 

means of a forward emission model for snow was proposed 

by [2]. The European Space Agency (ESA) GlobSnow 

project has applied this method to produce the Version 2.0 

SWE dataset from 1979 to the present for the Northern 

Hemisphere using the Scanning Multichannel Microwave 

Radiometer (SMMR), Special Sensor Microwave/Imager 

(SSM/I) and Special Sensor Microwave Imager/Sounder 

(SSMIS) data [3]. The GlobSnow-2 SWE product is freely 

available (www.globsnow.info), and is potentially of great 

interest to climate change, hydrological processes, 

permafrost changes, vegetation growth and river runoff [4]. 

However, there is no launching plan for these sensors 

(SSM/I and SSMIS) in the near future. The Microwave 

Radiation Imager (MWRI) onboard the Chinese FengYun-3 

(FY-3) series of satellites (FY-3A, 2008; FY-3B, 

2010‒2019; FY-3C, 2013‒the present; FY-3D, 2017‒the 

present) was designed for broad meteorological and 

environmental applications. Subsequent satellites FY-3E, 3F, 

and 3G are expected to be launched by 2025. Thus, the 

MWRI is expected to be one of the candidate sensors.  

The primary objectives of this study are to compare the 

difference of TB between MWRI and SSMIS over the 

Northern Hemisphere, to assess the influence of bias in TB 

on the SWE estimation for GlobSnow-2 assimilation system 

and to determine whether the MWRI dataset can be selected 

as one continuous record to produce long-term SWE data. 

 

2. MATERIALS AND METHODS 

 

2.1. Satellite passive microwave measurements 

 

The FY-3D satellite was launched on 15 November 2017 

and it is in a sun-synchronous orbit with local ascending 

overpasses at about 2:00 p.m. The MWRI sensor loaded in 

the FY-3D is a 10-channel, 5-frequency, 2-polarization 

radiometer system that measures TB ranging from 10.65 to 

89 GHz at horizontal and vertical polarizations 

(http://satellite.nsmc.org.cn). The SSMIS has provided 

continuous measurements at 19.35, 23.235, 37 and 91.655 

GHz since November 2006 (https://daacdata.apps.nsidc.org). 

Both the vertical and horizontal polarizations are measured, 

except at 23.235 GHz, where only the vertical polarization is 

measured. In this study, only the satellite observations at 

approximately 19 GHz and 37 GHz in vertical polarization 
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were assimilated into the GlobSnow-2. To enhances the 

spatial coverage, data used in GlobSnow-2 is a combination 

of ascending and descending orbital nodes. 

 

2.2. Reference datasets for evaluation 

 

Three independent reference datasets from China, Russia 

and Finland were used to assess the consistency in SWE for 

GlobSnow-2 assimilation system in this study. 

(1) China’s reference dataset 

The weather station daily data in China from January to May 

2018 were provided by the National Meteorological 

Information Centre, China Meteorology Administration (Fig. 

1). The recorded variables include the site name, 

geolocation (latitude and longitude) and snow depth (cm). 

Here, snow density is treated with a constant value of 240 

kg/m3 to transfer snow depth to SWE. We collected 

appropriately 7,000 records in China as evaluation data.  

(2) Snow surveys data from Russia 

The dataset has routine snow surveys that run throughout the 

cold season every 10 days (every five days during the 

intense snowmelt) at 517 meteorological stations (Fig. 1) of 

Russia (http://meteo.ru/english/data/). Snow surveys ran 

separately along all types of environment typical for the site 

for 1 to 2 km. At each 10 to 20 meters the snow depth was 

measured and at each 100 to 200 meters a snow density 

sampling was conducted. SWE was calculated as a product 

of snow depth and averaged snow density. A total of 6,000 

samples were collected as evaluation data. 

(3) Snow course data from Finland 

Finland has a comprehensive network of 139 snow survey 

sites (Fig. 1) operated by the Finnish Environment Institute 

(SYKE). The SWE measurement was made once or twice in 

every month. Each snow course is 2 to 4 km long, covering 

the various land cover types. The measurement procedure is 

similar to that of snow surveys in Russia. Appropriately 500 

samples were collected to assess the SWE estimates. 

 
Fig.1 Spatial distribution of the weather stations in three 

regions over the Northern Hemisphere (> 35º N). 

 

2.3. Methodology 

The methodology for SWE retrieve was overviewed in [3]. 

This approach takes into account atmospheric and forest 

effects to space-borne measurement by means of the forest 

transmissivity model by [5] and statistical atmospheric 

model in [6]. The optimization of effective snow grain size 

is conducted by fitting forward model (HUT) predictions to 

the satellite observations at approximately 19 and 37 GHz. 

A map of spatially continuous ‘assimilated SWE’ is 

produced though a Bayesian non-linear iterative assimilation 

approach first described in [2].  

Fig. 2 shows the assessment process in this study. 

Satellite observations from the MWRI and SSMIS sensors 

during the period January-May 2018 were used to retrieve 

SWE though the assimilation algorithm. We compared the 

differences in TB between MWRI and SSMIS over the 

Northern Hemisphere. Three independent reference SWE 

datasets were applied to assess the consistency of 

assimilated SWE products with MWRI and SSMIS 

(hereafter, GS@MWRI and GS@SSMIS, respectively). 

 
Fig.2 Flowchart of the assessment procedure in this study. 

 

3. RESULTS 

 

3.1. Comparison of TB between MWRI and SSMIS  

 

Table 1 shows the overall mean bias of TB between MWRI 

and SSMIS under snow possible areas. The TB from MWRI 

at 19 GHz tends to be larger than the observation of SSMIS, 

with mean biases of 3.6 K and 2.0 K for the ascending and 

descending, respectively. For the 37 GHz, the mean biases 

are minus, with mean biases of -0.3 K and -3.1 K for the 

ascending and descending orbits, respectively. 

Table 1. Summary of overall mean bias (MWRI - SSMIS). 

Mean Bias (K) 

Frequency Polarization Ascending Descending 

19 GHz V 3.6 2.0 

37 GHz V -0.3 -3.1 

The spatial patterns of bias in TB are shown in Fig. 3. 

MWRI tends to yield a higher TB than SSMIS for the 19 

GHz channel (Fig. 3a). The biases in middle-low latitudes (< 

54º N) are larger than these in high latitudes (> 54º N) for 

the 19VA (vertical polarization and ascending orbit) channel. 

For the 37 GHz channel, the patterns of bias in middle-low 

and high latitude areas are converse, especially for the 

ascending node (Fig. 3b). The biases are minus in high 

latitude areas, whereas they are positive in middle-low 

latitude areas for the ascending node. The pattern of bias 
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depends on the latitude for the ascending node (e.g., 19VA 

and 37VA channels).  

 
(a) 

 
(b) 

Fig.3 Spatial distribution of the bias between MWRI and 

SSMIS at (a) 19 GHz, and (b) 37 GHz in vertical 

polarization (V) for ascending (A) and descending (D) nodes. 

 

3.2. Assessment of consistency in SWE estimation  

 

3.2.1. Finland 

Fig. 4 shows the scatter plots of GS@MWRI and 

GS@SSMIS products compared with the reference dataset 

in Finland. Both products present similar performances with 

respect to correlation coefficient, RMSE, unbiased RMSE 

and mean bias. The results indicate that the consistency of 

both products is well in Finland. 

 

Fig.4 The comparison of two SWE products (GS@MWRI vs. 

GS@SSMIS) retrieved with GlobSnow-2 algorithm. 

Fig. 5 shows the time series of daily mean SWE 

estimates and station observations. Both colorful solid lines 

display that the temporal patterns of two products are similar. 

Black solid line presents the variation of weather station 

observations. Both products tend to overestimate SWE 

during the period January-March and underestimate SWE at 

the end of April. 

 
Fig.5 Time series of daily mean estimated SWE and ground 

truth value in Finland. 

 

3.2.2. Russia 

Fig. 6 shows the performances of two SWE products in 

Russia. Both products present notable underestimation under 

deep snow conditions (when SWE exceeds ~ 200 mm). 

However, the consistency of two products is well, with a 

high correlation coefficient of 0.99.  

 
Fig.6 The comparison of two SWE products (GS@MWRI vs. 

GS@SSMIS) retrieved with GlobSnow-2 algorithm. 

Time series of daily mean SWE estimates and station 

observations in Russia are shown in Fig. 7. Both products 

present similar patterns and they tend to overestimate SWE 

from January to March compared with the ground truth 

observation. The daily mean SWE is largest in April among 

snow season months. GlobSnow-2 algorithm presents a 

notable underestimation in April.  

 
Fig.7 Time series of estimated and observed SWE in Russia. 

 

2940



3.2.3. China 

Fig. 8 shows the time series of correlation coefficient, mean 

bias, and unbiased RMSE compared with station data in 

China. The temporally patterns are similar for two products, 

suggesting a well consistency of them. The correlation 

coefficient presents a decreasing trend from January to May 

(Fig. 8a). The mean bias and unbiased RMSE are lower in 

the beginning of snow season than later in the winter (Fig. 

8b and 8c). The mean bias increases from approximately 0 

mm to 30 mm and the unbiased RMSE from approximately 

15 mm to 33 mm in China, suggesting that the GlobSnow-2 

algorithm has problems for the SWE estimation in the late of 

snow season in China. 

 
Fig. 8 Time-series of (a) correlation, (b) mean bias, and (c) 

unbiased RMSE compared with station data in China. 

 

4. DISCUSSION 

 

The results in Section 3 present a decrease in the SWE 

accuracy, especially at the end of snow season. Fig. 5 and 

Fig. 7 indicate that there is notable underestimation at the 

end of snow season in Finland and Russia. This is because 

the snow cover is thick and the stratigraphic parameters 

become large (e.g. snow density), which leads to the limited 

penetration depth at 37 GHz, namely, saturation effect. Fig. 

8 indicates that GlobSnow-2 product tend to overestimate 

SWE since February in China.  The snow cover in China is 

generally shallow, with a mean SWE of approximately 25 

mm. The saturation effect should not occur for most snow 

conditions. Thus, the snow metamorphism is the dominant 

factor that leads to the strong scatter effects and a large TB 

gradient. The GlobSnow-2 SWE retrieval scheme utilized a 

fixed density of 240 kg/m3. While based on ground truth 

data, the average snow density in China is 180 kg/m3 [7]. 

There is no doubt that using a fixed snow density to convert 

from snow depth to SWE results in overestimation in China. 

There are notable TB differences between the MWRI and 

SSMIS (Table 1 and Fig. 3). However, the influence of these 

biases on SWE estimation for GlobSnow-2 assimilation 

system is small and even can be negligible in Globally. The 

snow grain size is a very important parameter within the 

forward TB simulation component of the retrieve. The 

effective grain size optimized by fitting the modeled TB into 

satellite observation is actually an effective value that 

includes the effect of modeling errors and uncertainties in 

input data [3]. Thus, the inconsistency in SWE estimation 

caused by the biases of two sensors’ observations is poor. 

 

5. CONCLUSION 

 

In this study, we compared the difference of TB between 

MWRI and SSMIS and analyzed the SWE consistency of 

GS@MWRI and GS@SSMIS products retrieved with 

GlobSnow-2 algorithm but different satellite data. We 

concluded that the spatial pattern of TB bias depends on the 

latitude for the ascending orbital node and that the SWE 

difference caused by the TB bias of MWRI and SSMIS is 

small and even can be negligible due to the implementation 

of optimizing effective snow grain size in GlobSnow-2. This 

study provides a scientific basis for treating the MWRI 

dataset as one of the candidate continuous satellite records. 
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