
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Assessment of Improved Ross–Li BRDF Models
Emphasizing Albedo Estimates at Large Solar

Angles Using POLDER Data
Yaxuan Chang , Ziti Jiao , Xiaoning Zhang , Linlu Mei , Yadong Dong, Siyang Yin,

Lei Cui, Anxin Ding, Jing Guo, Member, IEEE, Rui Xie,
Zidong Zhu, and Sijie Li

Abstract— Surface albedo is closely related to the Earth’s
energy budget and is usually estimated by integrating remotely
sensed bidirectional reflectance distribution function (BRDF)
data based on the widely used Ross–Li kernel-driven mod-
els. However, for large solar zenith angles (i.e., SZAs > 70◦),
albedo estimation using the operational algorithm of the
Moderate Resolution Imaging Spectroradiometer (MODIS),
i.e., RossThick-LiSparseReciprocal (RTLSR), is not recom-
mended because it is reported to somewhat underestimate the
black-sky albedo (BSA) at large SZAs based on ground albedo
measurements. Recently, various combinations of the Ross–Li
BRDF models with improved capabilities have been developed,
and the assessments of these models based on worldwide satellite
BRDF data with good spatial sampling, particularly at the
large view and solar angles, will be important to improve
an understanding of their performance in estimating intrinsic
albedos. Following previous studies, the objective of this study is
to further assess a series of hotspot-corrected Ross–Li models
by demonstrating their ability to fit the POLarization and
Directionality of the Earth’s Reflectances (POLDER) data sets
and estimate albedo, especially at large SZAs, based on selected
concurrent POLDER and MODIS data. The hotspot-corrected
RTLSR model obtained by combining the RossThickChen and
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LiSparseReciprocalChen kernels (RTLSR_C) shows the best
fitting ability, with a high cumulative frequency of small
root-mean-square errors (RMSEs), thus confirming previous
conclusions. Model differences mainly appear in albedo esti-
mates, especially BSA estimates at large SZAs. The BSAs
estimated by other models are significantly different from the
RTLSR_C estimates in the near-infrared (NIR) and red bands
as the SZA increases to approximately 60◦ and 70◦, respec-
tively. In this case, RossThinChen-LiSparseReciprocalChen
(RTNLSR_C) yields higher BSA estimates than those of
RTLSR_C. Comparisons of the MODIS and POLDER albedos
estimated with Ross–Li models show that models with the
RossThinChen kernel yield higher BSA estimates than those of
the RTLSR_C model as the SZA increases. The results indicate
that the retrieved albedo is likely to be more accurate with
appropriately selected kernels for BRDF models at large SZAs,
providing guidance for selecting suitable combinations of multiple
kernels.

Index Terms— Albedo, bidirectional reflectance distribution
function (BRDF), moderate resolution imaging spectroradiome-
ter (MODIS), POLarization and directionality of the Earth’s
reflectances (POLDER), Ross–Li models.

I. INTRODUCTION

LAND surface albedo, defined as the ratio of the reflected
over the incoming solar flux [1], has long been recognized

as an important energetic parameter related to the radiative
properties of the land surface. Albedo is related to directional
reflectance, which is usually described by the bidirectional
reflectance distribution function (BRDF); this function repre-
sents the inherent reflectance anisotropy of the land surface
and characterizes the directional reflectance in terms of its
spectral, angular, spatial, and temporal properties [2]. The
BRDF physically based models can explain the main causes
of anisotropic reflectance and the corresponding nonlinear
relationship with the albedo [3], and they permit calculation
of the land surface albedo [4]–[7]. Both the BRDF and albedo
are influenced by land surface properties, such as the surface
structure and optical characteristics. In climate studies, albedo
data sets are usually required to satisfy an absolute accuracy
of 0.02–0.05; the required measurement uncertainty of albedo
from the Global Climate Observing System (GCOS) exhibits
a maximum of (5%; 0.0025); and the stability exhibits a max-
imum of (1%; 0.001) [8], which is essential for some climate
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models [9]. Such models are utilized to evaluate the impact
of human activities on climate change [10]. Therefore, the
high-accuracy estimation of the BRDF and albedo, particularly
on the global scale, is essential not only for climate change
but also for weather forecasts, retrievals of various parame-
ters and vegetation indicators, such as the clumping index
(CI), a fraction of absorbed photosynthetically active radiation
(FAPAR), and normalized difference vegetation index (NDVI),
and environment-related studies [11].

Methods of estimating surface albedo based on satellite
remote sensing observations can be divided into two cat-
egories. Methods in the first category rely on the para-
meter optimization of a kernel-driven BRDF model on a
set of sufficient multiangular observations, and the albedo
is obtained by hemispherical geometrical integration of the
BRDF function itself. One example is the full inversion
algorithm used to generate the Moderate Resolution Imaging
Spectroradiometer (MODIS) albedo products that are obtained
via the direct integration of BRDF measurements through
the use of the RossThick-LiSparseReciprocal (RTLSR) model.
By contrast, for cases in which the available multiangular
observations are insufficient for performing full model inver-
sion, prior knowledge regarding the anisotropic reflectance
of the land surface must be used to estimate the surface
albedo [12]. Various methods have been designed that use
prior knowledge of the surface BRDF for albedo estimation.
These methods include algorithms developed to consider major
global vegetation types [13]–[15] and algorithms that use the
NDVI [16], [17]. Recently, the BRDF archetypal method has
been developed and evaluated as a means of using prior
knowledge in the estimation of surface albedos [18]–[20]
based on a hotspot-corrected BRDF model [21]. A direct
albedo estimation approach has been developed based on and
adapted to various operational instruments [22]–[26]. This
method is mainly based on a reflectance lookup table (LUT),
with the aim of performing a regression between the top of the
atmosphere (TOA) spectral reflectance and the surface albedo
for corresponding angular geometries. All these methods offer
a better understanding of how prior knowledge of surface
BRDFs can be used to improve the accuracy of land surface
albedo estimates.

The accuracy of albedo estimation is related to the choice
of the BRDF model because different models tend to have
slightly different abilities to characterize certain typical BRDF
features, particularly the reflectances at large solar zenith
angles (SZAs) and/or in the hotspot direction, where the
view and illumination angles coincide, even when observa-
tions with reasonably wide angular sampling are available.
Currently, semiempirical models or physically based kernel-
driven models, such as the Rahman–Pinty–Verstraete (RPV)
model [27] or RTLSR [5], are widely used to estimate surface
BRDFs and albedos. In particular, the available semiem-
pirical linear kernel-driven models include different forms
of geometric-optical (GO) kernels and volumetric scattering
kernels that have been developed for various purposes. Among
them, the RTLSR model has been adopted as the opera-
tional algorithm used to produce the MODIS BRDF/albedo
product suite. Originally, a kernel-driven model with the

RossThick (RT) kernel as the volumetric scattering kernel
and the Roujean kernel as the GO kernel was proposed
by Roujean et al. [28]. Subsequently, the RossThin (RTN)
kernel was developed as a volumetric scattering kernel to
represent the case of a small leaf area index (LAI), and various
other GO kernels were developed, including LiSparse (LS),
LiDense (LD), and LiTransit (LT) [29], [30]. To improve
the performance of kernel-driven BRDF models in various
remote sensing applications, particularly for retrieving the
vegetation CI [31]–[33], various attempts have been made to
correct for the hotspot effect in such models, especially the
default MODIS RTLSR model [21], [34]–[37]. Kernel-driven
models have been validated through early direct assessments
of model performance [38], [39] and through major assess-
ments of routine remote sensing products that are currently
being generated [40]–[44]. Most recently, a snow kernel has
been developed and assessed to better model the anisotropic
reflectance of pure snow in a kernel-driven BRDF model
framework [45]–[47]. The improved model has been imple-
mented in SCIATRAN [48] and used for the retrieval of
aerosol optical thickness over snow [49]. All these efforts have
provided further insight into kernel-driven BRDF models and
support various potential applications in the remote sensing
community.

Despite these efforts, different kernels were designed for
different scenarios and purposes, e.g., the Ross kernels to
characterize thin and dense forests or Li kernels to describe
various sparse vegetation canopies, so that a comprehensive
assessment of this series of models and the applications for
which they are suited is still advisable.

The POLarization and Directionality of the Earth’s
Reflectances (POLDER) provides, at the global scale,
high-quality BRDF archive data sets with good geometri-
cal sampling, including data for view zenith angles (VZAs)
greater than 60◦, where the range of its viewing azimuth
angle covers almost any azimuthal direction (i.e., 0◦–360◦),
and for geometries exhibiting the hotspot effect. However,
most current satellite sensors rarely offer such capabilities.
Notably, the general accuracy statement for MODIS albedo
products declares that data with SZAs greater than 70◦
should be considered suspect (https://modis-land.gsfc.nasa.
gov/ValStatus.php?ProductID=MOD43), consistent with pre-
vious reports that the MODIS RTLSR algorithm likely under-
estimates the albedo at large SZAs [41]. Moreover, further
development of hotspot-corrected models will require a com-
prehensive assessment of these models using a set of observa-
tions with good spatial sampling on the global scale, such as
the POLDER data, although it must be acknowledged that the
POLDER data have a relatively coarse spatial resolution and,
thus, capture less spatial variability in the surface reflectance
than the MODIS data [42], [50]. In previous similar model
performance evaluation studies, the multiangular data sets used
were mainly obtained via ground measurements and included
only a limited small range of SZAs [38], [39]. Further assess-
ment of these improved models in terms of BRDF/albedo
estimation, especially with a focus on the performance at large
SZAs, will be helpful for potential applications in polar areas
and mid-latitude areas in the winter season.
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Previous studies regarding field measurements and valida-
tions show that albedo increases with SZA over different
surface types, including snow, desert, vegetated, and ocean
surfaces [40], [41], [51]–[53]. Even along the same geographic
latitude, SZA also changes from sunrise to sunset, which
causes the albedo fluctuations. Satellite albedo estimation
products provide a global scale albedo by using various radia-
tive transfer models considering different SZA and VZA vari-
ations [54]. However, the operational MODIS BRDF/Albedo
algorithm was reported to probably cause an albedo bias at
large SZAs (>70◦) by the MODIS BRDF/Albedo product
team that evaluated MODIS albedo products using field mea-
surements and showed that the magnitudes of negative bias
increase to 0.07 at the SZA > 65◦. Recently, a commentary
on MODIS snow albedo bias at high SZAs relative to theory
and to in situ observations in Greenland [55] emphasized
the importance of making appropriate use of the extensive
quality flags available with the MODIS BRDF/Albedo. Most
recently, the development of a snow kernel to better model
the anisotropic reflectance of pure snow in a kernel-driven
BRDF model framework concludes that such a snow kernel
development has the potential to improve snow albedo estima-
tion at large SZAs [45], [47]. All these efforts underline the
importance of an accurate estimation of albedo at large SZAs
in different scales and in theory, based on the kernel-driven
BRDF model.

In this article, we present a comprehensive assessment of
the improved Ross–Li model series in regard to BRDF/albedo
retrieval by using POLDER BRDF data sets. The main pur-
pose of this assessment is to investigate whether different
Ross–Li model combinations may offer significant improve-
ments in albedo estimation relative to the RTLSR model,
particularly at large SZAs. First, we evaluate the fitting
abilities of hotspot-corrected Ross–Li models by using the
root-mean-square error (RMSE) as the evaluation metric.
Second, we evaluate the hotspot impact on albedo estima-
tion. Third, we compare black-sky albedo (BSA) estimations
of hotspot-corrected models with the corresponding MODIS
algorithm BSA estimations. Finally, we indirectly apply the
RTNLSR_C model in conjunction with MODIS data to esti-
mate albedo and compare it with site observation data and
MODIS albedo products.

II. DATA

A. POLDER Data Sets

The POLDER sensor was carried on the Polarization &
Anisotropy of Reflectances for Atmospheric Sciences cou-
pled with Observations from a Lidar (PARASOL) platform,
which was launched by the National Centre for Space Studies
(CNES) in 2004. The spatial resolution of POLDER was
approximately 6 km × 7 km at nadir, and the maximum
field of view (FOV) was 114◦ [56]. Affected by the curvature
of the Earth, the VZAs along and cross track were ±61◦
and ±50◦, respectively. As the satellite flew over a target,
at most 16 observations of the target are in different geometric
configurations for each revisiting time [57]. These observations
provide a broad sampling of BRDF values for VZAs of up to
almost 70◦ and SZAs of up to 75◦, assuming stability of the

Fig. 1. Cumulative bar plots presenting the proportions of observations at
large SZAs and VZAs considering the latitude. A large angle is defined as an
angle larger than 60◦ in the POLDER data sets. (a) SZA distribution. (b) VZA
distribution. The blue, orange, and gray bars represent three angular intervals
of [60◦ , 65◦), [65◦, 70◦), and [70◦, 75◦], respectively. The latitude ranges are
[0◦, 30◦), [30◦ , 60◦), and [60◦, 90◦].

target [56]. Importantly, hotspot (�ϕ = 0) signatures are also
included in many individual samples.

Two POLDER data sets, which provide multiangular data
for the years of 2005 to 2006 [58] and 2008 [57], were
collected and used in this research. In general, these two
data sets provide sufficient observations in various observation
geometries, especially in the backscatter direction in which
the hotspot effect occurs, and they have been used as prior
knowledge to estimate several important physical parame-
ters of vegetation, e.g., the CI [31]–[33], [59] and canopy
height [60]. Notably, all the POLDER data used here mainly
correspond to a single International Geosphere-Biosphere Pro-
gramme (IGBP) land cover type, and no records are available
regarding the effects of aerosols and clouds [56]. In this study,
we make use of six spectral bands with central wavelengths
of 490, 565, 670, 765, 865, and 1020 nm, where the band-
widths of these spectral bands are 16.5, 15.5, 15.0, 38.0, 33.5,
and 17.0 nm, respectively. A simple statistical analysis of the
angular distributions of the selected data depending on latitude
reveals that, in the middle and high latitude, the SZA ranges
0◦ to 75◦, and the VZA ranges 0◦ to 70◦ in all latitude ranges.
More detailed statistics on the distributions of the large zenith
angles are shown in Fig. 1, which illustrates the percentages
corresponding to three ranges of relatively large zenith angles
(>60◦) for both the view and solar geometries in the low-,
middle-, and high-latitude ranges. With the increase in the
latitude, the percentage of SZA ranging from 70◦ to 75◦ in all
relatively large zenith angles reaches 2.88%, which provides
sufficient observations under large SZAs.

Unsurprisingly, the large-VZA data account for a relatively
small proportion of the POLDER data used here because it
is still challenging for satellite sensors to acquire large-VZA
observations. Fortunately, although the POLDER data do not
include VZAs greater than 70◦, these data are nevertheless
likely to provide the necessary constraints for kernel-driven
BRDF models in the large-VZA range, particularly relative to
other satellite sensors, e.g., MODIS, which has been reported
to have a typical approximate range of VZA < 55◦ [41].

B. MODIS Products

To assess the directional hemisphere, also known as
BSA [61], with estimates obtained from the POLDER data
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set under the constraints of large VZAs using the improved
Ross–Li models, we selected the MCD43A1 MODIS BRDF
product to calculate the corresponding BSAs for comparison.
The RTLSR model is currently utilized as the operational
algorithm for MODIS. The three BRDF model parameters,
isotropic ( fiso), geometrical ( fgeo), and volumetric ( fvol) model
parameters, provide the best-fit and well-sampled values from
the RTLSR model inversion [62] that can be used to easily
calculate the BSA in any solar geometry. We also chose
several other MODIS products to select relatively pure coarse-
spatial-resolution POLDER pixels. The quality flag QA = 0 in
the MCD43A2 BRDF product was first applied to select the
best-quality BRDF parameters [62], [63]. The official IGBP
land cover product MCD12Q1 [64] was used to select pixels
with relatively pure snow-free land cover from among the
coarse POLDER pixels. The official vegetation continuous
fields (VCFs) product MOD44B [65], which represents the
percentage of one specific land cover type (vegetation, herba-
ceous, or bare ground) within a MODIS pixel, were further
used as a constraint to select the most homogeneous area at
POLDER spatial resolution.

The 500-m resolution MODIS BRDF parameters with the
best QA (i.e., QA = 0) were averaged to generate a coarse
MODIS BRDF data set with a spatial resolution of ∼6.5 km ×
6.5 km, given the assumption that linear BRDF models can
effectively model surface heterogeneities [42], [50]. The aver-
ages were performed over an array of 13 × 13 pixels of
the 500-m MODIS MCD43A1, which roughly corresponds
to match the size of a single POLDER pixel (6 km ×
7 km) [50]. Notably, in the process of selecting the relatively
pure POLDER data, we used 13 × 13 arrays of pixels of the
same land cover type from the 500-m MODIS IGBP land cover
product, where each array corresponded to a coarse POLDER
pixel. As a further layer of constraint, the VCF product was
used to ensure specific values of at least 60% for tree and
nontree vegetation and at least 90% for bare ground [50].
With all these constraints mentioned above, we finally obtained
1815 pixels of POLDER BRDF data and the corresponding
13 × 13 × 1815 pixels of MODIS BRDF data in both the red
and near-infrared (NIR) bands.

C. Albedo Observation Data

We selected eight site observations from 47 sites, which
includes albedo observations, MODIS kernel parameters, and
corresponding angle information. These eight observations are
observed at SZA = 30◦, 45◦, 60◦, and 75◦, respectively, and
exhibit good homogeneity that indicates effective representa-
tiveness for the MODIS pixels covering these ground sites. For
more details about these in situ albedo measurements, please
refer to the previous research by Zhang et al. [26].

III. METHOD

A. Hotspot-Corrected Kernel-Driven Ross–Li BRDF Models

The linear, semiempirical, kernel-driven BRDF model orig-
inally derived by Roujean et al. [28] is expressed as a linear
combination of isotropic, volumetric, and GO scattering ker-
nels [29], [66]. The spectral anisotropic reflectance is given as

follows:
R(θi , θv , ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θi , θv, ϕ)

+ fgeo(λ)Kgeo(θi , θv, ϕ) (1)

where R(θi , θv , ϕ, λ) is the surface anisotropic reflectance in
waveband λ in the angular geometry represented by SZA (θi),
view zenith angle (θv), and relative azimuth angle (ϕ). Kvol(θi ,
θv , ϕ) and Kgeo(θi , θv , ϕ) represent the volumetric and the GO
scattering kernel, respectively, which are expressed in terms
of θi , θv , and ϕ between the incident and reflecting directions.
The isotropic scattering kernel has a constant value (i.e., 1.0).
fiso, fvol, and fgeo are spectrally dependent coefficients, which
represent the weights of the corresponding scattering kernels
and need to be retrieved. fiso represents the isotropic spectral
reflectance for coincident illumination and viewing direction
at nadir. fvol and fgeo characterize the anisotropic reflectance
of a non-Lambertian reflective surface.

Kgeo characterizes the shadow effects of a canopy [67], and
Kvol represents the volumetric scattering effects of a canopy
of randomly distributed leaves in the single-scattering approx-
imation [68]. The RT kernel (KRT) and the LiSparseRecip-
rocal (LSR) kernel (KLSR) are adopted in the MODIS
BRDF/albedo operational algorithm. However, with these two
kernels, the hotspot signature cannot be explicitly formalized.
To address this problem, Jiao et al. [21] applied a hotspot
function with an exponential form to the volumetric scattering
kernel to obtain the hotspot-corrected RossThickChen (RTC)
kernel (KRTC). We follow the same method to correct the
RTN kernel to obtain the RossThinChen (RTNC) kernel.
The hotspot-corrected RTC and RTNC volumetric scattering
kernels are shown in (2) and (3)

KRTC = (π/2 − ξ) cos ξ + sin ξ

cos θv + cos θi
×

�
1 + C1e− ξ

C2

�
− π

4
(2)

KRTNC = (π/2 − ξ) cos ξ + sin ξ

cos θv × cos θi
×

�
1 + C1e− ξ

C2

�
− π

2
(3)

cos ξ = cos θi cos θv + sin θi sin θv cos ϕ (4)

where ξ is the phase angle and is defined in (4). The term
1+C1 exp (−ξ /C2) is the so-called hotspot function, where C1

and C2 are two adjustable hotspot parameters that modify the
height and width of the original shape of the volumetric scat-
tering kernel. This hotspot function was previously suggested
by Chen and Cihlar [35] to represent a simplified version of
the hotspot effect in the four-scale model.

However, some slight underestimation also exists in the
RossThickChen-LiSparseReciprocal (RTCLSR) model, partic-
ularly in the rare case in which the volumetric contribution to
the reflectance anisotropy is null ( fvol = 0). In this case, the
corrected volumetric scattering kernel no longer plays a role.
To address this problem, Dong et al. [69] proposed a method
in which the above exponential hotspot function is also applied
to the overlap function of the LSR kernel to improve the
simulation capability of KLSR. This improved kernel, called
LiSparseReciprocalChen (LSRC), is shown as follows:
KLSRC = O

�
θ �

i , θ
�
v , t

��
1 + C1e− ξ

C2

�
− sec θ �

i − sec θ �
v

+ 1

2

�
1 + cos ξ �� sec θ �

v sec θ �
i (5)
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where the function O is the overlap between the viewing
and illumination shadows, which theoretically determines the
hotspot effect for a discrete vegetation canopy at the crown
scale [67]. This improvement in the overlap function can
enhance the hotspot effect because of the further consideration
of the leaf distribution within the canopy

O
�
θ �

i , θ
�
v , t

� = 1

π
(t − sin t · cos t)

�
sec θ �

i + sec θ �
v

�
(6)

in which the variables are defined as follows:

cos t = h

b

�
D2

�
tan θ �

i tan θ �
v sin ϕ

�
sec θ �

i + sec θ �
v

(7)

D =
�

tan2 θ �
i + tan2 θ �

v − 2 tan θ �
i tan θ �

v cos ϕ (8)

cos ξ � = cos θ �
i cos θ �

v + sin θ �
i sin θ �

v cos ϕ (9)

θ �
i = tan−1

�
b

r
tan θi

�
and (10)

θ �
v = tan−1

�
b

r
tan θv

�
(11)

where h is the mean height from the center of the crown to
the ground, and b and r are the mean vertical half-axis and
mean horizontal radius, respectively, of the modeled ellipsoid
crown. Therefore, h/b and b/r represent the shape and relative
height, respectively, of the crown. In general, h/b and b/r are
set to values of 2 and 1, respectively.

In this article, we also adopt the same improvement method
to correct other GO kernels. The other GO kernels obtained
after hotspot correction are referred to as LiTransitRecipro-
calChen (LTRC) and LiDenseReciprocalChen (LDRC) ker-
nels. The corresponding GO kernels are defined as follows:

KLDRC =
�
1 + cos ξ �� sec θ �

v sec θ �
i

sec θ �
i + sec θ �

v − O
�
θ �

i , θ
�
v , t

��
1 + C1e− ξ

C2

� − 2.

(12)

To improve the extrapolation ability of GO models,
a kernel called LiTransitReciprocal (LTR) has been devel-
oped [30], [70]. This kernel takes a transitional form between
the LiSparseReciprocal LSR and LiDenseReciprocal (LDR)
kernels. If the critical value of B is greater than 2, which means
that the multiangular data have large VZAs, then the LDRC
kernel function should be applied in the model. Otherwise,
LSRC should be used. Thus, the LTR kernel can be improved
in the same way as LSR and LDR

KLTRC =
⎧⎨
⎩

KLSRC, B ≤2

LLDRC = 2

B
KLSR, B > 2

(13)

where

B = sec θ �
i + sec θ �

v − O
�
θ �

i , θ
�
v , ϕ

�
. (14)

By combining all the improved volumetric scattering ker-
nels and GO kernels mentioned earlier, we can construct
a new series of improved Ross–Li models (see Table I).
RTC and RTNC are the abbreviations of RossThickChen and
RossThinChen kernels, respectively. LSRC, LDRC, and LTRC
are the abbreviations of LiSparseRChen, LiDenseRChen, and

TABLE I

IMPROVED ROSS–LI MODELS

LiTransitRChen, respectively, where _C after the name of each
model means that this model is modified by the hotspot cor-
rection function. Unlike the RTCLSR model, the models listed
in Table I do not introduce new free hotspot parameters, thus
simplifying their form and application for potential users [69].

The albedo is the angular integral of the BRDF. Based
on these improved kernel-driven models, the POLDER data
sets, and the optimal hotspot parameters, we can retrieve the
three constrained kernel parameters (i.e., fiso, fgeo, and fvol)
of the BRDF models and then easily simulate the surface
reflectance in any angular geometry in the forward mode. The
BSA (directional hemispherical reflectance) at typical SZAs
ranging from 0◦ to 75◦ in 5◦ intervals and the white sky
albedos (WSAs; bihemispherical) can then be calculated using
these kernel parameters for all spectral bands through model
integration. The functions for calculating the BSA and WSA
are shown as follows:

BSA(θi , λ) = 1

π

� 2π

0

� π
2

0
R(θi , θv , ϕ, λ) sin θv cos θvdθvdϕ

(15)

WSA(λ) = 2
� π

2

0
BSA

�
θi , λ

�
sin θi cos θi dθi (16)

where θi , θv , ϕ, and λ are the same as in (1).

B. Anisotropic Flat Index for BRDF Classification

In this study, we adopt the AFX to capture the variability
in the shape of the BRDF. The AFX is defined as the ratio
of the WSA to the isotropic kernel parameter [71], which is
a linear combination or a product of kernels. It combines all
three parameters and the kernel values into a single variable.
In addition, it eliminates the influence of spectral reflectance,
thus making the BRDF “purer” and easier to compare among
different bands. The function for calculating the AFX is shown
as follows:

AFX = 1 + fvol(λ)

fiso(λ)
× Hvol + fgeo(λ)

fiso(λ)
× Hgeo (17)

where Hvol and Hgeo are the bihemispherical integral values
of the volumetric scattering kernel and the GO kernel, respec-
tively. For a given scattering type, these integrals are constant.

The volumetric scattering kernels exhibit typical bowl
shapes, while the GO kernels exhibit dome shapes. The shape
of the BRDF varies from dome-like to bowl-like depending
on the weight of each kernel. When these two scattering
components precisely balance each other, the AFX value is 1.0,
indicating a surface with Lambertian reflectance, and the curve
of the BRDF is almost flat at the edge. When the volumetric
scattering component plays the main role in scattering from the
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land surface (i.e., AFX > 1.0), a more bowl-shaped reflectance
pattern will be exhibited. By contrast, an AFX value of < 1.0
indicates that surface scattering is the dominant component; in
this case, the BRDF curve will tend to be more dome-shaped.

Generally, we consider the red and NIR bands as the typical
wavebands in which, to examine the model characteristics
according to observations, multiangular data in the red band
exhibit mainly dome-shaped anisotropy (AFX < 1), whereas
the data in the NIR band are more prone to bowl-shaped
anisotropy (AFX > 1).To identify clusters of AFX values in
similar ranges, we calculated the AFX for each POLDER pixel
in both the red and NIR bands. To obtain the most represen-
tative data, we select the bottom ten percent of the original
POLDER data in the red band (i.e., AFX < 0.707, lower 10%
of 12 769 POLDER pixels) and the top 10% of the data in the
NIR band (i.e., AFX > 1.017, higher 10% of 13 377 POLDER
pixels). These groups of data contain 1265 and 1334 data
points. Based on these representative data, we further compare
and analyze the hotspot effect for the improved Ross–Li
models and the variability in the dome/bowl-shaped BRDFs
and derived albedos.

C. Error Functions

The RMSE, which is commonly used as a quantitative
criterion for the evaluation of kernel-driven models, is defined
in (18)

RMSE =
�n

j=1

�
Robs − Rmodel

�2

n − 3
(18)

where Robs is the observed reflectance, Rmodel is the reflectance
simulated by the corresponding BRDF model, and n is the
number of observations. To eliminate the impact of spectral
differences on the BRDFs, we use the isotropic parameter of
the model (i.e., fiso) to normalize the RMSE values, thereby
obtaining directly comparable RMSE_r values for different
bands [32]. RMSE_r is calculated, as shown in (19). This
method eliminates the differences in the BRDFs caused by
spectral reflectance and, thus, emphasizes the variability of
the “pure” BRDFs

RMSE_r =

�����n
j=1

�
Robs−Rmodel

fiso

�2

n − 3
. (19)

Linear inversion is not feasible for retrieving the three
model parameters and two hotspot parameters simultaneously.
We also use the RMSE method to determine the optimal
hotspot parameters (C1 and C2) for the six improved models in
six different bands based on the POLDER hotspot data. Theo-
retically, once the three model parameters are known and suf-
ficient multiangular observations are available, the two hotspot
parameters can be derived via nonlinear least-squares methods
for each set of data. Moreover, the accuracy of the hotspot
parameters is affected by the number of observations in the
vicinity of the hotspot direction, i.e., ξ ≤ 5◦ [21], [69], [72].
Thus, to maintain the linearity of these improved kernel-driven
models to ensure user convenience and retrieval performances,

one method is to determine the two hotspot parameters as
internally constant prior values (similar to h/b and b/r in
the GO kernel). In this study, we follow a method [21], [69]
that consists of iteratively changing the values of C1 and C2

in small, fixed steps and then calculating the corresponding
RMSE values. Finally, we can determine the optimal C1

and C2 by selecting the lowest RMSE among all calculated
values. The steps of retrieving the two hotspot parameters are
explained as follows (for the RTLSR_C model and a single
band as an example).

First, we set the ranges of variation from 0.1 to 2.0 in a step
of 0.1 for C1 and from 1.0◦ to 10.0◦ in a step of 0.1 for C2.
We set the initial values of C1 and C2 in the RTLSR_C model
to 0.1 and 1.0◦, respectively, and fit this model to each group of
POLDER data. Based on the inversion of the three parameters
for each group of data, we select the observed and simulated
data corresponding to phase angles ξ ≤ 5◦ to perform the
optimization around only the hotspot region.

Second, we calculate the RMSE for each pair of C1 and C2

parameters.
Third, 2000 RMSEs (for 20 values of C1 and 100 values

of C2) were calculated based on (18).
Finally, C1 and C2 optimal values are obtained by minimiz-

ing the RMSE.

D. Validation of RTNLSR_C Using Albedo Observations

Since MODIS official products do not provide the original
multiangle reflectances and it is not possible for us to acquire
the same multiangle reflectance as the operational MODIS
product suite does, we, therefore, link three parameters of the
RTLSR model to the model parameters being explored in this
article by using a statistical method.

First, we construct the linear regression relationship of
model parameters between RTLSR_C and RTNLSR_C models
based on the POLDER data set and, thus, derive model
regression coefficients for each band of POLDER data. Sec-
ond, we match POLDER bands with MODIS bands from the
corresponding visible bands to NIR bands. Third, we use
the regression model in the first step to acquire MODIS
RTNLSR_C BRDF parameters from the operational MODIS
BRDF parameters. Fourth, we simulate single band albedo by
RTNLSR_C BRDF parameters taking the general percentage
of the diffuse skylight (i.e., 20%) for the MODIS pixels in
the flux tower (20) [73]. Fifth, we perform a narrowband-
to-broadband albedo conversion by Liang’s research [74]. The
conversion formula is shown in (21)

albedosimulate = 0.8 × BSA(θS, λ) + 0.2 × WSA(λ) (20)

αMODIS = 0.160α1 + 0.291α2 + 0.243α3 + 0.116α4

+ 0.112α5 + 0.081α7 − 0.0015 (21)

in which α1−7 represent the albedos of 648-, 859-,466-,
554-, 1244-, 1631-, and 2119-nm bands, respectively. Finally,
we compare albedo simulated by RTNLSR_C and operational
MODIS albedo products (i.e., RTLSR model) with albedo
observations.

Authorized licensed use limited to: Beijing Normal University. Downloaded on December 16,2020 at 02:57:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: ASSESSMENT OF IMPROVED ROSS–LI BRDF MODELS EMPHASIZING ALBEDO ESTIMATES 7

Fig. 2. Shapes of the kernels after hotspot correction with parameters of C1 = 0.7 and C2 = 5.0 at SZAs of 30◦, 45◦ , 60◦ , and 75◦. (a) Shapes of the two
volumetric scattering kernels, with the dotted and solid lines representing RTNC and RTC, respectively. (b)–(d) LSRC, LTRC, and LDRC kernels, respectively.

E. Experimental Design

The design framework of this experiment is illustrated as
follows.

Step 1: Preparatory processing, including data filtration and
the determination of the optimal hotspot parameters.
First, we use near-hotspot observations from the
POLDER database corresponding to ξ ≤ 5◦ [21].
Then, we fit the six combined-kernel-driven models,
with the two hotspot parameters (C1 and C2) as free
parameters, to these selected POLDER BRDF data
to calculate the simulated BRDFs. Next, we deter-
mine the optimal C1 and C2 values for each model
in each band based on the lowest RMSE between the
observed and simulated BRDFs. Finally, we apply
these improved models with the corresponding opti-
mal C1 and C2 values to all POLDER/BRDF data
sets.

Step 2: Evaluation of the fitting abilities of hotspot-
corrected models. Based on models and data in
step 1, we calculate the RMSE and RMSE_r values
to assess the fitting ability of models.

Step 3: The evaluation of the influence of hotspot correction
on albedo estimation. To explore the ability of
models to estimate albedo at large SZAs and the
potential influence of the hotspot effect on the over-
all shape of the BRDF, data screened based on the
AFX in the red and NIR bands are used to evaluate
the influence of the hotspot parameters on the BSA
estimates. Then, we identify the possible differences
in the albedos, especially the BSAs at large SZAs
that are derived by applying the six Ross–Li models
to the POLDER data with sufficient multiangular
observations. The significance of the differences
between the other models and the MODIS opera-
tional algorithm, in particular, is examined by means
of the t-test. Here, we use a nominal α value
of 0.05 for the t-test to determine whether there is
a significant difference in performance between the
two models.

Step 4: Comparison between the improved models and the
MODIS algorithm on BSA estimation. We select
relatively pure 13 × 13 MODIS pixels and the con-
current POLDER pixels. The BSAs derived using

the RTLSR_C model with the average MODIS
BRDF parameters are used as the benchmark to
compare the BSAs calculated using the six Ross–
Li _C models based on the POLDER data against
the corresponding average 6.5 × 6.5 km MODIS
observations. This analysis will be helpful to iden-
tify potential problems identified in relation to the
MODIS operational algorithm of MCD43A1, espe-
cially at large zenith angles.

Step 5: Validation of RTNLSR_C model using ground
albedo observations. We follow the workflow in
Section III-D to finish this validation. This valida-
tion helps to make the conclusion derived in step 4
more solid.

IV. RESULTS AND ANALYSIS

A. Optimal Hotspot Parameters for the Six Improved Models

Models used here refer to Table I. The shapes of the
hotspot-corrected kernels on the principal plane at four dif-
ferent SZAs are shown in Fig. 2. We can see that the RTNC
kernel tends to have higher values around the hotspot than the
RTC kernel, with more bowl-shaped BRDFs at large VZAs.
The bowl shape of the BRDF in the case of the RTNC
kernel is emphasized at higher SZAs as the SZA increases.
The LTRC kernel has the same shape as the LSRC kernel
around the hotspot, but its shape at large VZAs is the same
as that of the LDRC kernel, representing the transition in
shape from the LiSparseRChen to the LiDenseRChen kernel.
In addition, as the SZA increases, the forward reflectance
of the LiSparseRChen kernel rapidly decreases. With the
same values of the hotspot parameters, the LDRC kernel
appears more sensitive to these parameters. Based on the
method introduced in Section II-B, we retrieved the optimal
hotspot parameters for these six models in six different bands,
as shown in Table II.

B. Examination of Model-Observation Fits for the Corrected
Ross–Li Models

We first evaluate these BRDF models with the optimal
fixed hotspot parameters (i.e., no free hotspot parameters)
based on the fit-RMSEs obtained through comparison between
POLDER real data and simulated data. The mean values of
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TABLE II

THE OPTIMAL FIXED VALUES OF HOTSPOT PARAMETERS FOR THE VARIOUS COMBINED-KERNEL MODELS,
AS CALIBRATED BASED ON THE SELECTED POLDER HOTSPOT DATA SET IN SIX DIFFERENT BANDS

Fig. 3. (a) Mean values of the fit-RMSEs for the six combined-kernel models in six bands. (b) and (c) RMSE statistics in the red and NIR bands in boxplots,
respectively. The orange and gray sticks represent the maximum and minimum values. The red sticks represent the median values.

the RMSEs for the six models in the six bands are shown
in Fig. 3(a). The RMSE is the average value of RMSE
computed over different POLDER pixels by each model in
each band. In the visible wavebands, the discrepancies among
the mean values of the fit-RMSEs in different bands are
generally less than 0.001. The differences among the models
are generally similar in the six bands. The RTLSR_C model,
which is the MODIS operational algorithm with hotspot cor-
rection, shows the best fitting ability (i.e., the lowest RMSE).
The models with the RTC volumetric scattering kernel have
lower RMSEs than the models with the RTNC kernel when
combined with the same GO kernel. One exception is that
the RTNLSR_C model seems to show somewhat better fitting
performance than the other models in which the RTNC kernel
is used as the volumetric scattering kernel. For example,
the mean RMSE values in the red and NIR bands for the
RTNLSR_C model are 0.0059 and 0.0087, respectively; the
values for the RTNLTR_C model are 0.0064 and 0.0094,
respectively; and the values for the RTNLDR_C model are
0.0064 and 0.0092, respectively. Similar differences among
these models were observed in the other bands.

Let us now consider the RMSE histograms calculated by the
real and simulated POLDER data in the red and NIR bands;
the results are shown in Fig. 3(b) and (c). Although the mean

RMSEs in the NIR band are somewhat higher than those in the
red band, they are generally less than 0.01, indicating that all
models generally achieve good fits on the entire POLDER data
archive. The differences between the maximum and minimum
RMSE values in these two bands are not at the same level;
especially, the difference in the red band is almost twice the
difference in the NIR band, indicating that the uncertainty in
these POLDER observations is definitely less in the NIR band
than in the red band.

To evaluate the performance of the six improved
combined-kernel BRDF models, both the RMSE and RMSE_r
values are further examined. Fig. 4 illustrates the cumulative
frequencies of the RMSE and RMSE_r values in the red and
NIR bands.

Fig. 4 shows that all investigated models can fit the
entire archive of the POLDER observations with high qual-
ity yielding quite low RMSE values in both the red and
NIR bands although there are also some differences among
the six models. All the hotspot-corrected models have bet-
ter fitting abilities than the MODIS RTLSR model since
the RMSE/RMSE_r cumulative distribution function of the
RTLSR model increases slower than other models. In general,
the RMSEs in the NIR band are significantly higher than those
in the red band because the reflectance in the NIR band is
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Fig. 4. Cumulative frequencies of the RMSE and RMSE_r values obtained when fitting all POLDER observations from both data sets and simulating the
BRDFs using the six hotspot-corrected BRDF models with the optimal fixed hotspot parameter values (see Table I). (a) and (b) Cumulative frequencies of
RMSE values of the red and NIR bands, respectively. (c) and (d) Cumulative frequencies of RMSE_r values of the red and NIR bands, respectively.

always higher than that in the red band for measurements that
include various vegetation types. This is true for all models
considered here. More than 90% of the POLDER observations
have fit-RMSEs of less than 0.009 and 0.015 in the red and
NIR bands, respectively. The cumulative frequencies of the
fit-RMSEs for the RTLSR_C model increase more rapidly at
low RMSE values than those for the other models in both
bands, reaching approximately 90% at values of 0.0075 and
0.0125 in the red and NIR bands, respectively, which corre-
sponds to the result in Fig. 3 and the good performance of
the MODIS operational algorithm in previous studies. These
findings indicate that the operational MODIS model with the
hotspot-corrected kernels exhibits a stronger fitting ability
than the other models. Among these models, the RTNLTR_C
model shows a relatively slow increase in the cumulative
frequencies of the fit-RMSEs in both bands, particularly in
the NIR band. In the red band, the cumulative frequencies
of the fit-RMSEs for the RTLTR_C and RTLDR_C models
are almost the same, as are those for the RTNLTR_C and
RTNLDR_C models, indicating that the models that include
either the LDRC or LTRC kernel have a similar ability to fit
the POLDER observations.

Once the different spectral influences caused by fiso have
been removed, the cumulative frequency results for RMSE_r
indicate smaller differences in the fitting ability for these
different models, particularly between the red and NIR bands,
since the spectral differences are normalized out with respect
to the corresponding spectral magnitudes, i.e., fiso. The six
models all reach cumulative frequencies of 90% at RMSE_r
values ranging from 10.5% to 13.5% in the red band and from
4.5% to 5.5% in the NIR band. These results confirm the

previous finding that the POLDER data in the NIR band have
less uncertainty than those in the red band, most likely because
of the weaker effects of the atmosphere and aerosols [57], [75].
With the exception of the RTLSR_C and RTNLSR_C mod-
els, the cumulative frequencies of the various models do
not appear to exhibit significant differences [see Fig. 4(b)].
The RMSE_r analysis indicates that the RTLSR_C model
does not always achieve the best performance in fitting all
observations, even in the NIR band. Moreover, the RTNLSR_C
model shows a distinctly poorer fitting ability, particularly with
regard to RMSE_r values in the range of 2.5%–5.5% relative
to the other models. This analysis of RMSE_r indicates
that a comprehensive evaluation of these models based on
the entire archive of POLDER observations can provide an
improved understanding of the suitability of different models
for different applications, allowing potential users to select
appropriate models for their needs instead of completely
relying on the RTLSR_C (or RTLSR) model. Therefore,
in Sections IV-D to F, we will mainly focus on exploring
the differences between RTLSR_C and the other models,
especially for the case of albedo estimation at large SZAs.

C. Influence of Hotspot Correction on Albedo Estimation

We selected 10% of the data in each of the red and NIR
bands based on the AFX to compare the differences in the
abilities of models with and without hotspot correction to
estimate the BSA and WSA. Fig. 5 illustrates the differ-
ences in the trends of variation of the RMSEs for the BSA
as the SZA increases and WSA between models with and
without hotspot-corrected kernels in the red and NIR bands.
Although, in the red band, the RMSEs for BSA estimation
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Fig. 5. Lines represent the differences between the RMSEs for BSA estimates obtained using models with and without hotspot correction at SZAs ranging
from 30◦ to 75◦ in the red and NIR bands. The solid triangles and solid circles represent the RMSE differences for WSA estimates obtained using models
with and without hotspot correction in the red band and the NIR band. (a) and (b) Differences between RMSEs for BSA estimates obtained using models with
and without hotspot correction at SZAs ranging from 30◦ to 75◦ in the red and NIR bands, respectively. (c) Differences between RMSEs for WSA estimates
obtained using models with and without hotspot correction in the red band (solid triangles) and the NIR band (solid circles).

with RTLSR_C and RTNLSR_C show the most increasing
trends with increasing SZA, a significant difference between
the models with and without hotspot correction appears only
in the case of RTLSR_C at a large SZA, i.e., SZA = 75◦,
according to the t-test results. RTLSR and RTLSR_C also
have the largest RMSEs for WSA estimation, while the
RMSEs of the other four models are very small, indicating a
nonsignificant difference between the versions of these models
with and without hotspot correction. The trends of variation
for these models in the NIR band are similar to those in
the red band although the models with the LTR and LDR
kernels tend to show a dramatic increase in the RMSEs for
BSA estimation at SZA > 45◦ relative to those in the red
band. However, in the NIR band, there are no significant
differences in the BSA estimates between models with and
without hotspot correction for all six models according to
the t-test results. In general, the trends of variation of the
RMSEs for WSA estimation in the NIR band are the same
as those in the red band although the difference in RMSE
between different models decreases. The overall trends of
the RMSEs for albedo estimation between models with and
without hotspot correction indicate an increasing difference
with increasing SZA. This finding suggests that it should be
possible to use hotspot-corrected kernels to compensate for the
underestimation of the albedo in the original models without
hotspot correction, particularly at large SZAs [41].

D. Differences in Albedo Estimates Between the RTLSR_C
Model and the Other Models

To compare the albedos calculated using the RTLSR_C
model and the other hotspot-corrected models, we present only
the statistics for the WSA estimates in the red and NIR bands.
As shown in Fig. 6, because the WSA is a simple constant
and does not vary with the SZA, the average WSA in the
NIR band is nearly twice that in the red band, apparently
because of the large reflectance of various vegetation types
in the NIR band. The models based on the same volumet-
ric scattering kernel in the kernel-driven framework yield
similar WSAs; however, the models with the RTNC kernel
tend to overestimate the WSAs relative to models with the
RTC kernel. This is because the RTNC kernel tends to result

Fig. 6. Statistics of the WSA estimates in the red and NIR bands. The orange
and gray sticks represent the maximum and minimum values. The red sticks
represent the median values. (a) and (b) Statistics of the WSA estimates in
the red and NIR bands, respectively.

in a more prominently bowl-shaped BRDF curve than the
RTC kernel does (see Fig. 2). According to the t-test results
for comparisons between two models with either the same
volumetric scattering kernel or the same GO kernel, we find
that the average WSA estimates produced by models with
the RTC kernel are not significantly different from those
produced by models with the RTC kernel in either band.
Again, the differences between the RTNLSR_C model and the
other models in terms of WSA estimation can be reasonably
explained by the more prominently bowl-shaped pattern of
the RTNC kernel at large VZAs. In general, the comparisons
between the RTLSR_C model and other models with either
the same volumetric scattering kernel or the same GO kernel
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Fig. 7. Comparisons of WSA estimates between the RTLSR_C model and other models using either different volumetric scattering kernels or different GO
kernels in (a)–(c) red and (d)–(f) NIR bands.

show rather high levels of correlation, with R2 > 0.9, although
the WSA estimates obtained using RTNLSR_C are somewhat
higher than those obtained using the RTLSR_C model [see
Fig. 7(c) and (f)].

In theory, the BSA tends to increase as the SZA
increases [41]. Fig. 8 shows how the BSA estimates of these
six models vary with the SZA and the differences between
them based on only the POLDER observations selected with
respect to a given AFX threshold from the entire POLDER
archive; 10% of the POLDER data in each of the red and NIR
bands were selected based on the AFX. The BSAs in the NIR
band are obviously greater than those in the red band because
of the higher reflectance of vegetation in the NIR band, and
the differences between the models are more prominent in the
NIR band. The BSAs increase as the direction of illumination
from the sun becomes farther from the zenith direction in both
the red and NIR bands.

Fig. 8(a) and (d) shows the BSA estimates from the six
models for SZAs ranging from 0◦ to 75◦. The BSAs estimated
by the different models are very similar to each other when
the SZA is small; although the BSAs seem to be somewhat
underestimated by the RTLSR_C model (red triangles and
lines), in general, there is no significant difference in the
BSA estimates among the different models at SZA < 60◦.
At SZA > 60◦, the differences in the BSA estimates, particu-
larly between RTNLSR_C (green lines) and the other models,
present a significant increasing trend. Fig. 8 shows that the
other models tend to yield higher BSA estimates than the
RTLSR_C model does in an SZA range of 0◦–60◦ in both
bands. At SZA > 60◦, the models in which the RTNC kernel
is used as the volumetric scattering kernel usually produce
larger BSA estimates. The t-test results show that the BSA

estimates of all the other models are significantly different
from those of the RTLSR_C model at SZA > 60◦ in the NIR
band. By contrast, in the red band, although the BSA esti-
mates generated by RTNLSR_C show significant differences
at SZA > 60◦, the other models do not show a significant
difference in BSA estimation relative to the RTLSR_C model
until the range of SZA > 75◦.

Fig. 8(b) and (e) shows the differences in the BSA estimates
between each of the other five models and RTLSR_C in
the red and NIR bands. The differences that exhibit similar
trends of variation are presented in similar colors. It is clear
that the BSA estimates generated by models with either the
LTRC or LDRC kernel as the GO kernel and the same
volumetric scattering kernel exhibit similar trends of variation
with an increasing SZA. In general, the models with the
same GO kernel but different volumetric scattering kernels
(RTC or RTNC) tend to present markedly different trends.
The differences between the models with the RTC kernel and
the RTLSR_C model (blue lines) become even smaller as the
SZA increases, while the differences between the models with
the RTNC kernel and the RTLSR_C model (green and yellow
lines) become larger at SZA > 60◦. The differences in the
BSA estimates between RTLTR_C/RTLDR_C and RTLSR_C
are approximately equivalent to the differences between the
LTRC/LDRC kernels and the LSRC kernel.

From the perspective of the analysis of the kernel shape as
a function of the SZA (see Fig. 2), we can see that, compared
with the dome-shaped LSRC kernel, the LTRC/LDRC kernels
tend to exhibit a somewhat flatter shape at large VZAs;
however, the LSRC kernel tends to show a more prominent
increase along the backward scattering direction than the other
two kernels as the SZA increases, especially at SZA > 60◦.
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Fig. 8. (a) and (d) BSA estimates obtained using the six hotspot-corrected Ross–Li models at SZAs varying from 5◦ to 75◦ . (b) and (e) Differences in the
BSA estimates between the RTLSR_C model and the other investigated models. Similar trends of variation are presented in similar colors. (c) and (f) Results
analogous to those in the middle figures except that only a subset of the POLDER data, selected based on the AFX, is used, where the selected data present
more prominent dome/bowl-shaped BRDF curves. In these plots, only the SZA range from 30◦ to 75◦ is considered because of the nonsignificant differences
at SZA < 30◦.

The differences between the RTNLTR_C/RTNLDR_C and
RTLSR_C models (yellow lines) are similar in magnitude
to the differences between the RTNC and RTC kernels and
between the LTRC/LDRC kernels and the LSRC kernel.
This can be reasonably explained by a similar analysis of
the corresponding BRDF shapes of these kernels, which,
in turn, has an influence on the modeled shape. For example,
the differences in the BSA estimates between the RTNLSR_C
and RTLSR_C models, which are represented by the green
lines, show a dramatically increasing trend at SZA > 60◦
relative to the differences with respect to RTNLTR_C and
RTNLDR_C [see Fig. 8(b) and (e)]. These results are caused
by using RTN as the volumetric scattering kernel while
keeping LSR as the GO kernel in the kernel-driven model
framework. These findings can be further validated by using
the AFX to select data with more prominent BRDF shapes,
as shown in Fig. 8(c) and (f). When these AFX-selected data
are utilized, the trends caused by the BRDF shapes of the
relative kernels are also more prominent. For example, in the
NIR band, the differences between RTNLTR_C/RTNLDR_C
and RTLSR_C [yellow lines in Fig. 8(c) and (f)] are sim-
ilar, and the differences between RTLTR_C/RTLDR_C and
RTLSR_C [blue lines in Fig. 8(c) and (f)] are also simi-
lar. However, these two groups of BSA estimate differences
present opposite trends as a result of the different trends
of variation in the kernel shapes of the RTC and RTNC
models as the SZA increases [see Fig. 2(a)]. In summary,
through a comparison of the BSA estimates generated by
these models using POLDER data, together with an analysis

of the variability in the kernel shapes as a function of the
SZA, we can see that appropriate combinations of various
Ross–Li kernels can provide an improved understanding of
the estimated albedos (e.g., the BSA here) and, in particular,
can provide a way to address the underestimation of the albedo
at large SZAs of > 70◦.

E. Comparison of POLDER Albedo Estimates With
Concurrent MODIS Data

Comparison of BSA estimated by the six improved models
with POLDER data and the MODIS BSA product at local
solar noon is shown in Fig. 9. The range of MODIS local
solar noon varies from 1.8◦ to 61.4◦. The biases in the red
and NIR bands are positive for all models, which means that
the hotspot-improved models have larger BSA estimations than
the MODIS algorithm when the SZAs are smaller than 60◦.
The models that are composed of the RossThinChen kernel
have a higher bias than models that are composed of the
RossThickChen kernel. This result confirms the ability of
the improved models to solve the slight underestimation of
MODIS albedo that was found in the previous study [41].

To further examine the potential differences in terms of
BSA estimation in the large-SZA range of 60◦–75◦ for each
of the other investigated models relative to the RTLSR model,
Fig. 10 shows the scatterplots that compare the BSAs simu-
lated with the RTLSR model using the operational MODIS
BRDF parameter product against the BSAs estimated with
all the other Ross–Li models using the concurrent POLDER
data in the red and NIR bands. From Fig. 10, we can see
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Fig. 9. Comparison of BSA estimates obtained from the coarse-resolution POLDER data using the six models (on the vertical axis) and the corresponding
13 × 13 finer resolution MODIS data calculated with RTLSR_C (on the horizontal axis) at local solar noon. (a) and (g) Comparisons between BSA estimates
obtained from POLDER data using RTLSR_C and the corresponding MODIS BSA in the red and NIR bands, respectively. (b) and (h) Comparisons between
BSA estimates obtained from POLDER data using RTLTR_C and the corresponding MODIS BSA in the red and NIR bands, respectively. (c) and (i)
Comparisons between BSA estimates obtained from POLDER data using RTLDR_C and the corresponding MODIS BSA in the red and NIR bands, respectively.
(d) and (j) Comparisons between BSA estimates obtained from POLDER data using RTNLSR_C and the corresponding MODIS BSA in the red and NIR
bands, respectively. (e) and (k) Comparisons between BSA estimates obtained from POLDER data using RTNLTR_C and the corresponding MODIS BSA in
the red and NIR bands, respectively. (f) and (l) Comparisons between BSA estimates obtained from POLDER data using RTNLDR_C and the corresponding
MODIS BSA in the red and NIR bands, respectively. All these BSA estimates are at local solar noon.

that the BSA estimates obtained by applying the RTLSR
model to the MODIS data and those obtained by applying the
other investigated models to the POLDER data are generally
consistent (with a large R2); however, the biases depend on the

selected model. The models with the RTC kernel as Kvol have
a BSA estimation ability similar to that of the RTLSR model in
both bands (the first and third rows in Fig. 10) although some
differences also exist between the two bands. In the red band,
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Fig. 10. Comparison of BSA estimates obtained from the coarse-resolution POLDER data using the six models (on the vertical axis) and the corresponding
13 × 13 finer resolution MODIS data calculated with RTLSR (on the horizontal axis) in the large-SZA range of 60◦–75◦ . The black points represent BSAs
at SZA = 60◦ , the red points represent BSAs at SZA = 65◦, the cyan points represent BSAs at SZA = 70◦, and the blue points represent BSAs at SZA =
75◦. (a) and (g) Comparisons between BSA estimates obtained from POLDER data using RTLSR_C and the corresponding MODIS BSA in the red and NIR
bands, respectively. (b) and (h) Comparisons between BSA estimates obtained from POLDER data using RTLTR_C and the corresponding MODIS BSA in
the red and NIR bands, respectively. (c) and (i) Comparisons between BSA estimates obtained from POLDER data using RTLDR_C and the corresponding
MODIS BSA in the red and NIR bands, respectively. (d) and (j) Comparisons between BSA estimates obtained from POLDER data using RTNLSR_C and
the corresponding MODIS BSA in the red and NIR bands, respectively. (e) and (k) Comparisons between BSA estimates obtained from POLDER data using
RTNLTR_C and the corresponding MODIS BSA in the red and NIR bands, respectively. (f) and (l) Comparisons between BSA estimates obtained from
POLDER data using RTNLDR_C and the corresponding MODIS BSA in the red and NIR bands, respectively.

the BSA estimates obtained by applying models with the RTC
kernel to the POLDER data are somewhat higher than those
obtained by applying the RTLSR_C model to the MODIS data.
By contrast, the models with the RTNC kernel applied to the

POLDER data show significant overestimation of the BSA.
Compared with the results obtained from the RTLSR model
using the MODIS data, in the NIR band, this overestimation
increases as the SZA increases from 60◦ to 75◦; in particular,
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TABLE III

COMPARISON OF THE SIMULATED AND OBSERVED ALBEDO

the RTNLSR_C estimates present markedly larger differences
relative to the RTLSR estimates with the bias increasing from
0.02 to 0.08. According to the direct comparison between
the MODIS albedo and ground measurements, the biases are
approximately negative 0.02–0.08 at large SZAs [41]. This
finding provides further evidence that a model with a suitable
combination of the Ross–Li kernels, e.g., the RTNLSR_C
model here, can provide a way to improve the somewhat
underestimated albedos at large SZAs (e.g., SZA > 75◦) that
have been noted by the MODIS albedo product team [41].

F. Validation of RTNLSR_C Model Using Albedo
Observations

The comparison of albedo simulated by RTNLSR_C and
MODIS albedo products with albedo observations is shown
in Table III. The comparison results show that, when
SZA ≤ 60◦, the albedos simulated by RTNLSR_C or RTLSR
model are similar. Compared with the site observations, the
simulated albedos have the same negative or positive bias
trend as observations. When SZA = 75◦, albedo estimation by
the RTNLSR_C model is higher than MODIS products and is
closer to albedo measurements derived from the network sites,
which further confirms the conclusion that the RTNLSR_C
model has the potential to solve the underestimation of
albedo at large SZAs. This effort proves that the RTNLSR_C
model performs better with respect to estimating albedo at
large SZAs.

V. DISCUSSION

In this study, we have comprehensively assessed the
improved Ross–Li series of the kernel-driven models using
the entire POLDER BRDF archive. In particular, we have
analyzed the capabilities of these models in regard to the
estimation of the intrinsic albedo of the land surface, with an
emphasis on the comparison and analysis of the variability
in the BSA estimates as a function of the SZA in the
large-SZA range of 60◦–75◦. Our intent was to revisit the
strategy proposed early by the MODIS BRDF/albedo team
to identify which improved Ross–Li series models show the
best potential to correct the underestimation of the retrieval
albedo (particularly the BSA) at large SZAs. The main finding
of this study is that, among the improved Ross–Li models
under investigation, the RTLSR_C model (i.e., the opera-
tional MODIS BRDF algorithm with hotspot-corrected kernel
functions) shows the best performance in fitting the entire
POLDER BRDF archive and, thus, in estimating the intrinsic
land surface albedos. Furthermore, our results also show that
the models that include the RTNC kernel are most likely to

successfully correct the underestimation of the intrinsic albedo
of the operational RTLSR algorithm in the large-SZA range.

However, some potential problems must be further discussed
here. First, the BRDF sampling capabilities of the MODIS
sensors are limited, particularly for the acquisition of obser-
vations near the hotspot direction and in the VZA range > 60◦.
Considering this potential problem, we adopted all data from
two POLDER data sets to obtain multiangular observations
with good BRDF sampling in these two regimes in order to
comprehensively assess six recently hotspot-improved Ross–Li
models. The data sets selected from the POLDER database for
this purpose have wide angular ranges, e.g., the SZAs are as
large as 75◦, and the VZAs reach 70◦. Observations at such
angles can more effectively constrain the models under inves-
tigation that cannot be achieved using the MODIS data [71];
as a result, it is expected that the intrinsic albedo (particularly
the BSA) of the land surface can be more accurately estimated.
In addition, a larger quantity of observations near the hotspot
direction can similarly provide better constraints to optimize
the hotspot parameters, which, in theory, should help to
further improve the accuracy of intrinsic albedo estimation.
Therefore, the use of the POLDER observations to assess the
recently hotspot-improved Ross–Li models can be reasonably
expected to yield additional significant findings compared
with many similar studies previously reported in this domain
(e.g., [38], [39], and [41]). Nevertheless, we note that there
is a potential limitation related to the common problems with
multiangular observations. For example, because of the wide
FOV of POLDER (up to 70◦), there is an enormous difference
between nadir observations and nonnadir observations [3].
Such inherent characteristics of multiangular observations will
inevitably lead to some level of error.

In addition, some uncertainty arises in assessing the vari-
ability in albedo estimates using the 6×7 km POLDER pixels
due to their coarse spatial resolution, which is likely to result
in mixed pixels that include various land cover types to some
degree; especially, at large VZA, the larger footprint makes it
more difficult to guarantee surface homogeneity. To address
this uncertainty, in this study, MODIS BRDF products with a
500-m spatial resolution were initially utilized as constraints
to select high-quality POLDER pixels and were also used as a
benchmark to assess the albedo estimates from the concurrent
POLDER pixels. In our previous study, we confirmed that
the arrays of 13 × 13 MODIS pixels can be very well
matched to single POLDER pixels [50] by using various prior
information (e.g., BRDF quality flag products, MODIS land
cover products, and MODIS VCF products) [60]. Notably, this
study presents only an indirect comparison between the results
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obtained using the MODIS BRDF products and those obtained
using the POLDER observations as evidence. It is still difficult
to acquire representative in situ albedo measurements within a
footprint as large as 6×7 km (or even larger at large VZAs) for
further validation. Notably, since acquiring the same multian-
gular reflectance data as the operational MODIS BRDF/albedo
product does is an extreme challenge, the validation of the
RTNLSR_C model by directly using original multiangular
MODIS reflectance is not performed in this study. (However,
we proposed the method to indirectly apply RTNLSR_C model
in conjunction with MODIS BRDF data to estimate albedo and
compare it with site observations and MODIS albedo products,
which further confirms our results based on the POLDER
data.)

Although BRDF and surface types describe different aspects
of the surface, the relationship between these improved kernels
and surface types still needs further construction since the
kernels mutually complement each other in depicting the
characteristic of BRDF.

Despite the potential uncertainties, the POLDER database
provides highly valuable data with good BRDF sampling
characteristics, especially in the hotspot direction and for
large-angle view geometries, on the global scale. Moreover,
the potential uncertainties associated with these POLDER data
should have almost the same influence on each of the models
explored in this study; therefore, these uncertainties should be
largely offset in comparisons between models. Hence, it can be
concluded that the results presented here are probably credible
and thus helpful for guiding potential users in applying these
models for various purposes in the future.

VI. CONCLUSION

In this study, in order to address the underestimation prob-
lem of MODIS albedo at a large SZA, which was reported
early in some studies, we used POLDER data to assess
the performance of six hotspot-corrected Ross–Li models.
We relied on the calculated RMSE and RMSE_r values to
evaluate the reflectance fitting ability. To explore the problem
that the default MODIS intrinsic albedo products (particularly
the BSA) are likely underestimated by the operational RTLSR
model in the large-SZA range of >70◦, we focused on compar-
ing the BSA and WSA estimates obtained by applying these
models to the entire POLDER archive with the corresponding
aggregated MODIS products calculated at a similar spatial
resolution. The main findings are as follows.

1) The fitting accuracy of the RTLSR_C model (i.e., the
operational RTLSR model with hotspot-corrected kernel
functions) is the best among all of the investigated models
(including the RTLSR model), thus confirming the results
of several early studies that mainly relied on various
collected field measurements [3], [38], [39].

2) The hotspot correction on Ross–Li models has an influ-
ence on albedo estimation, especially at large SZAs.

3) Furthermore, in the large-SZA range of 60◦–75◦, models
that include the RTNC kernel show an appropriate over-
estimation (with biases varying from 0.02 to 0.08) of the
BSAs relative to the operational MODIS BRDF/albedo
algorithm (i.e., RTLSR), according to a comparison

of the intrinsic albedo estimates obtained using the
coarse POLDER data with the aggregated corresponding
MODIS BRDF products. Therefore, such models may
provide a way to compensate for the albedo underesti-
mation of the operational model at large SZAs that have
been reported in previous studies (e.g., [41]).

Notably, although we have revisited the performance of
these improved Ross–Li models and presented a promising
way to improve the intrinsic albedo estimation at large SZAs
using the POLDER data, it will likely still be a challenge
to use these models in an operational fashion because the
overwhelming majority of current multiangular sensors rarely
capture observations as wide a range of viewing angles as
those available in the POLDER data explored here. Therefore,
the development of a strategy for effectively using such prior
knowledge in such situations will be extremely important in
the near future.
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