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Abstract— Estimation of downward shortwave radiation (DSR)
is of great importance in global energy budget and climatic
modeling. Although various algorithms have been proposed,
effective validation methods are absent for rugged terrains
due to the lack of rigorous methodology and reliable field
measurements. We propose a two-step validation method for
rugged terrains based on computer simulations. The first step
is to perform point-to-point validation at local scale. Time-
series measurements were applied to evaluate a three-dimensional
(3-D) radiative transfer model. The second step is to validate
the DSR at pixel-scale. A semiempirical model was built up to
interpolate and upscale the DSR. Key terrain parameters were
weighted by empirical coefficients retrieved from ground-based
observations. The optimum number and locations of ground
stations were designed by the 3-D radiative transfer model and
Monte Carlo method. Four ground stations were selected to
upscale the ground-based observations. Additional three ground
stations were set up to validate the interpolated results. The
upscaled DSR was finally applied to validate the satellite products
provided by MODIS and Himawari-8. The results showed that
the modeled and observed DSR exhibited good consistency at
point scale with correlation coefficients exceeding 0.995. The
average error was around 20 W/m2 for the interpolated DSR and
10 W/m2 for the upscaled DSR in theory. The accuracies of the
satellite products were acceptable at most times, with correlation
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coefficients exceeding 0.94. From an operational point of view,
our method has an advantage of using small amount of ground
stations to upscale DSR with relatively high accuracy over rugged
terrains.

Index Terms— Downward shortwave radiation (DSR), field
observations, rugged terrain, spatial interpolation and upscaling,
validation.

I. INTRODUCTION

SURFACE downward shortwave radiation (DSR) is the
radiative energy in the solar spectrum reaching the Earth’s

surface per time per unit area. It is the main driving force
for the matter and energy cycle of the Earth system, playing
a major role in the atmospheric and oceanic circulations,
hydrological cycle, plant productivity, and climate change
monitoring [1]–[4].

Land surface radiation monitoring mainly relies on ground
stations and satellite observations [5]. Satellite radiation prod-
ucts are always validated by ground observations. Due to
the importance of ground measurements, there are various
observational networks established all over the world, such
as the Global Energy Balance Archive (GEBA) [6], [7]; the
Baseline Surface Radiation Network (BSRN) [8], [9]; the
Surface Radiation Budget Network (SURFRAD) [10], [11]
and the FLUXNET, which contains AsiaFlux, AmeriFlux,
ChinaFlux, and so on [12]. However, rugged terrains cover
approximately 24% of the Earth’s land surface, playing an
important role in the spatiotemporal distribution of DSR.
With the demands of observations in mountainous areas,
some related land surface experiments were implemented,
such as the Global Energy and Water Cycle Experiment
(GEWEX), Asian Monsoon Experiment on Tibetan Plateau
(GAME/Tibet), and the Coordinated Enhanced Observing
Period (CEOP) Asia–Australia Monsoon Project (CAMP).
Some stations were also established in mountainous areas,
such as nine stations from Alpine Surface Radiation Budget
(ASRB) project in Switzerland [13], three stations in the
Austrian RADiation monitoring network (ARAD) [14], two
stations from the Watershed Allied Telemetry Experimental
Research (WATER) program [15], [16], twelve stations in the
north face of the Sierra Nevada Mountains in Spain [17], and
five stations in the Guadalfeo river watershed in southern Spain
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[18]. In mountainous areas, topographic effects are significant
on steep slopes and in deep valleys. The slope gradients,
aspects, and shadows could diversify surface radiation dra-
matically. However, the stations in these experiments were
usually set up on relatively flat places. Besides, pyranometers
were mostly leveled to provide measurements of radiation on
a horizontal plane, which makes it difficult to validate the
topographic effects with ground measured data [19], [20].
Only a few researches pay much attention to the slope-parallel
observation in mountainous areas. Mayer positioned radiome-
ters parallel to the slopes around Arizona’s Meteor Crater
to achieve the surface shortwave radiation for the validation
of the MYSTIC model [21]. Wu et al. [22] compared the
differences between observed irradiance and albedo between
the horizontal and slope-parallel radiometers, proving that it
is pivotal to have slope-parallel observations in the evaluation
of satellite products. Wen et al. [23] concluded that when
surface reflectance over rugged terrains is to be validated,
whether the observation instrument should be parallel to the
slope surface or the horizontal surface is a question that needs
to be answered according to the definition of the study object.

A single measurement site is able to represent DSR over a
large area on flat terrains, but this is not the case over rugged
terrains [24], [25]. In mountainous areas, variabilities in ele-
vation, surface orientation (slope and aspect), and shadows
casted by surrounding terrains have a significant influence
on the spatial distribution of DSR [26], [27]. The spatial
variability limits the representativeness of the point-scale
observations [28], [29]. Disparities of as much as 42% in
the daily DSR are found between the exact energy received
by a slope and the estimated values without consideration of
topography [18].

As satellite products are developing from grid-level (≥1◦)
to kilometer-level, we can no longer ignore the topo-
graphic effects on DSR retrieval. Usually, the validation
of kilometer-level DSR is conducted by a direct compari-
son between the remote sensing products and ground-based
measurements [30]–[33]. The mismatch of spatial scales is
ignored and it is not clear whether the point-scale observations
are representative of their surroundings or not. The error
originating from their spatial sampling scales is defined as
representativeness error [34]. A study revealed that even on
flat terrains, 13% of errors are attributed to the inherent
representativeness error for instantaneous products. Only when
timescales are longer than or equal to one day, representa-
tiveness error can be ignored in validation [35]. But over
rugged terrains, strong spatial heterogeneity will dramati-
cally weaken the representativeness of point-scale observations
and thus increase the validation error. Therefore, reasonable
interpolation and upscaling method should be proposed to
produce a reliable data set for satellite product validation. The
widely used strategies can be categorized into three types. The
most direct way is based on the statistical sampling theory
including random, systematic, and stratified sampling [36].
A second strategy is to utilize the geostatistical-based algo-
rithms, such as the block-Kriging, which predicts the spatial
average while taking spatial autocorrelation into account [37].
A third strategy incorporates high-resolution remote sensing

images as auxiliary to bridge the spatial gap between point-
scale observations and kilometer-scale products [38]. All these
strategies have been applied to various study fields such
as soil moisture [39], evapotranspiration [40], sensible heat
fluxes [41], and LAI [42], [43]. But there are only a few studies
paying special attention to solar radiation over rugged terrains.
The DSR embodies distinctive characteristics different from
other parameters. Its value over rugged terrains is dominated
by the structure of land surfaces rather than the spectrum of
land covers. The terrain factors and atmospheric conditions act
as controlling factors to the spatial distribution of the energy.
The high heterogeneity of DSR and the difficulty in field
campaign make the validation not a trivial work, implying the
great necessity to challenge the DSR validation aporias over
kilometer-scale rugged terrains.

In this framework, we propose a methodology to validate
DSR in mountainous areas. The ground observations at various
locations provided truth values at point-scale. The simulation
of a three-dimensional (3-D) radiative transfer model and
Monte Carlo method were used to locate the ideal ground
stations. A semi-empirical model was developed to upscale the
point-scale DSR to kilometer-scale. This article is organized
as follows: In Section II, the data sets, procedures of field
experiments, and the principle of interpolation and upscal-
ing method are elucidated. In Section III, the performances
of point-scale DSR validation, interpolation, and upscaling
results are evaluated. Discussions about cloud effects on the
results and comparison with traditional upscaling method are
presented in Section IV. Finally, Section V summarizes the
main points of this article.

II. DATA AND METHODS

A. Study Area and Data

1) Study Area: The study area locates on the Moon Moun-
tain of Saihanba Forest Park (42◦23’N, 117◦24’E) in Chengde,
northeast of China. Two regions of interest were chosen
to cover an area of 5 km × 5 km and 2 km × 2 km,
respectively [Fig. 1(a)]. The large region served as the pixel-
scale validation district corresponding to the spatial resolution
of satellite products. The subregion functioned as the point-
scale validation district and the experimental field for DSR
interpolation and upscaling, considering the accessibility of
the mountains and the operability of our experiments. It was
dominated by rugged terrains with the elevation ranging from
1660 to 1890 m. The digital elevation model (DEM) data
generated by Ziyuan III satellite (ZY3) with a resolution
of 12.5 m were utilized in our study [Fig. 1(b)] for elaborate
calculation of terrain parameters. The land surfaces are mainly
covered by grasses, with a certain amount of shrubs and trees
patching over the region in spring and summer [Fig. 1(c)],
making it feasible for the installation and maintenance of
ground stations.

2) Data Sets: Over the 2 km × 2 km study area, we con-
ducted two experiments to obtain point-specific measurements.
In the first experiment, the DSR data were collected from
July to August in 2015, while the ground stations in the second
experiment have been on operation since August 10, 2018.
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Fig. 1. Topographic characteristics of the study area, including (a) locations of the 5 km × 5 km and 2 km × 2 km study areas, (b) DEM data, and
(c) Landsat8-OLI image of the subregion.

Fig. 2. Measured DSR at different slopes on November 2, 2018.

Fig. 2 gives an example of the observed data. Detailed infor-
mation about the ground stations and data sets can be seen
from the Appendix. Different slopes, aspects, and surrounding
terrains make the temporal variation of DSR varied signifi-
cantly. Over rugged terrains, the amplitude and phase positions
of diurnal radiation curves change with the local sun-terrain
geometry. The sunlit duration time of a station is determined
not only by the solar position but also by the shadows caused
by topography. It proves that spatial heterogeneity of DSR is
dramatically strengthened under topographic effects [44].

Over the 5 km × 5 km study area, we chose two types of
kilometer-scale DSR products to be validated on account of
the accessibility and continuity of the satellite data. The first
product is the L3 shortwave radiation data derived from the
Himawari-8 satellite, which provides DSR at 1-h scale with
a resolution of 5 km (available at ftp://ftp.ptree.jaxa.jp). The
shortwave radiation parameterization method is based on the
work of Frouin and Murakami [45]. The second product is the
gridded 5-km DSR generated from MODIS data (MCD18A1),
which supplies instantaneous DSR at the satellite overpass
time and interpolated estimates at 3-h intervals (available
at https://ladsweb.modaps.eosdis.nasa.gov/search/). The basic
framework was presented by Liang et al. [46] for estimating
photosynthetically active radiation (PAR). The time-series data

of the two products were extracted from October 30, 2018 to
November 30, 2018.

B. Point-Scale Validation Method of DSR

The bottleneck for the validation of satellite products is the
mismatch of spatial scales. Over rugged terrains, the validation
methodology of DSR can be decomposed into two steps
referring to the conventional level-by-level or hierarchical
validation approach. The first step is to perform point-to-
point validation at local scale. Point-specific observations
are obtained to evaluate the high-resolution DSR simulated
by physical models. The second step is to yield upscaled
predictions for the validation of satellite products. The scale
gap will be filled with an effective interpolation and upscaling
method, which will be discussed in Section II-C.

In the first step, the acquirement of reliable point-scale
observations is the prerequisite for a holistic validation sys-
tem. Considering the complicated characteristics of rugged
terrains, the ground stations were set up on varied terrains
to ensure the representativeness of spatial samplings. The two
observational methods measure different downward radiation
on slopes, as illustrated in Fig. 3. The parallel slope method
in Fig. 3(b) and (c) measures the direct, diffuse, and terrain-
reflected irradiance from the hemisphere �1, which is con-
sistent with the three components of DSR reaching to slope
surfaces. While as shown in Fig. 3(d) and (e), the radiometer
is set up at a horizontal level, which contradicts with the
underlying inclined surface. In this way, the radiation coming
from �2 will be measured instead of �1. Moreover, the illumi-
nation angle of local slope is consistent with the angle between
the direct beam and the normal of the radiometer plane
in Fig. 3(c), which largely determines the measured direct
irradiance. In our study, we adopted the first observational
method. The radiometers were mounted parallel to the land
surfaces [Fig. 3(a)] on a portable tripod ranging from 1.5 to
3 m above the ground.

A LargE-Scale remote sensing data and image
Simulation framework (LESS) is capable of depicting the
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Fig. 3. Installation of ground stations and the two observational methods for DSR on slope surfaces. Edir, Edif, Eref are the direct irradiance, diffuse
irradiance, and terrain-reflected irradiance the slope received, respectively.

complicated radiative transfer process in the context of real
scenes [47], [48]. It employs a forward photon tracing method
to simulate flux data and has an advantage over other 3-D
radiative transfer models in computation efficiency. LESS has
been compared with other models from the RAdiative transfer
Model Intercomparison (RAMI) experiment and validated
with field measurements in the previous study, guaranteeing
the accuracy of radiative simulation. More information about
the LESS model is on the website (http://lessrt.org).

We chose LESS as a tool for DSR upscaling. First, it was
validated at point-scale. With high-resolution DEM data as the
input, three components of DSR were simulated separately.
By setting the surface albedo as zero, we simulated direct
and diffuse irradiance over rugged terrains with only direct
and only diffuse irradiance over flat terrains as inputs, respec-
tively. The terrain reflected irradiance was the rest part of the
total irradiance subtracted by the sum of direct and diffuse
irradiance over rugged terrains. The spatial resolution of the
simulated DSR is consistent with the input DEM data (12.5 m).
The in situ observed DSR can match with the spatial scale of
simulations, as we carefully selected the slopes to be uniform
within the simulated pixels and thus the spatial heterogeneity
can be ignored. Fig. 4 gives an example of the simulation
results over the study area. In terms of qualitative analysis,
direct irradiance is in tight relation to slope orientations and
solar directions, thus showing higher values on east-facing
slopes than west-facing slopes in the morning. Diffuse irradi-
ance is dominated by the scattered sunlight coming from the
visible upper-hemisphere. It approaches the maximum value
at hilltops and open areas, while comparatively low values at
valleys and slopes due to the obstruction of surrounding ter-
rains. By contrast, the terrain-reflected irradiance contradicts
with diffuse irradiance by showing higher values in valleys as
adjacent mountains can make a great contribution to multi-
scattering energy. In terms of quantitative evaluation, modeled
and observed DSR were compared at various times and places.
To mimic the real environmental conditions, we used the
measured direct and diffuse irradiance on the flat hilltop as

inputs for the LESS model on cloud-free days. Combined with
the solar geometry and the measured surface albedo, the point-
scale DSR at ground stations was calculated by LESS and then
validated by the measurements on the slopes. To control the
geometric registration between them, we measured the local
geographic coordinates, slopes, and aspects with the global
positioning system (GPS) and the compass. Thus, we can find
the exact locations of the ground stations from the DEM and
extract the in situ DSR from the LESS simulations to match
with the ground observations.

Apart from the field validation, we performed the inter-
comparison between the LESS and the traditional Mountain
Radiative Transfer model, which we called MRT in this article.
In the MRT model, the direct irradiance can be expressed by
the product of the vertical incidence on horizontal surfaces
(I ↓

dir,⊥ ) and the cosine angle between the incident ray and the
slope surface normal (cosis), which is expressed as

cosis=cos(SZA) cos(S)+sin(SZA)sin(S)cos(SAA−A) (1)

where SZA and SAA denote solar zenith angle and solar
azimuth angle; S and A denote slope and aspect. More-
over, some slopes may be sheltered and unable to receive
direct radiation from the sun. A Boolean shadow factor �
is introduced to reflect whether the target slope is sunlit or
not [49], [50]. Therefore, the direct irradiance can be calcu-
lated as

I ↓
dir(SZA, SAA, DEM) = � × I ↓

dir,⊥ × cosis. (2)

The diffuse irradiance is the product of the sky irradiance on a
flat surface (I ↓

dif) and the sky view factor (Vd) which represents
the portion of the overlying hemisphere visible to a pixel [51].
This radiation component is expressed as

I ↓
dif (DEM) = I ↓

dif × V d(DEM). (3)

The adjacent-terrain reflected radiation is obtained through the
method established by Proy et al. A computation-demanding
iterative process is required to take into account the mul-
tiscattering. Finally, the DSR over rugged terrains is the
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Fig. 4. Three components of DSR simulated by LESS at 10:00 A.M. on August 15, 2015. (a) Direct irradiance. (b) Diffuse irradiance. (c) Terrain-reflected
irradiance.

sum of the three components with the measured direct and
diffuse irradiance on the flat hilltop as inputs. To avoid the
uncertainties in calculating direct and diffuse irradiance over
flat terrains, the I ↓

dir,⊥ and I ↓
dif in the above equations were

represented by the ground observations on the flat hilltop.
Detailed illustrations about the shadow factor and the sky view
factor are provided in the Appendix. In a nutshell, the MRT
model serves as a useful auxiliary to evaluate the LESS model
and to illustrate our semi-empirical algorithm in Section II-C.

To perform the quantitative validation, the Pearson corre-
lation coefficient (R2), the root mean squared error (RMSE),
the discrete Fréchet distance (DFD) [52], [53], and the mean
error (ME) were applied to assess the validation results, which
are expressed as follows:

R2 =
n∑

i=1

(Mi − M)(Oi − O)

/

[
n∑

i=1

(Mi − M)2
n∑

i=1

(Oi − O)2

]
(4)

RMSE =
√√√√ n∑

i=1

(Mi − Oi )2/n (5)

DFD = min{max[d(Mai , Obi )]} (6)

ME =
(

n∑
i=1

Mi −
n∑

i=1

Oi

)
/n (7)

where n is the number of data over a day; Mi and M are
the modeled instantaneous DSR and daily average DSR; O
and O are the observed instantaneous DSR and daily average
DSR; Mai and Obi are the samplings of the modeled and
observed diurnal DSR curves. The operator d indicates the
Euclidean distance of the two sampling points. The R2 and
RMSE measure the discrepancy between the modeled and
observed instantaneous DSR. The discrete Fréchet distance
measures the resemblance of diurnal variation and the mean
error evaluates the accuracy of daily mean DSR.

C. Interpolation and Upscaling Method of DSR

Disparity in spatial scales between ground-based obser-
vations and satellite products highlights the significance of

Fig. 5. Flowchart of the interpolated and upscaling scheme.

interpolating and upscaling point-scale observations for pixel-
scale validation. Large-scale differences pose serious chal-
lenges of the procedure, which arise from not only the strong
heterogeneity caused by rugged terrains, but also the sparsely
located nodes which are insufficient to capture the spatial
variation of DSR. Thus conventional upscaling methods fail
to achieve acceptable accuracy with densely observing net-
work hardly practical on mountains. Therefore, we spearhead
major efforts to propose a method for DSR interpolation and
upscaling over rugged terrains. The whole scheme is illustrated
in Fig. 5. First, we developed the semi-empirical algorithm
for interpolation and upscaling. Second, the simulations of
LESS were treated as the reference truths to help locate the
ideal ground stations through Monte Carlo method. Third,
the semiempirical algorithm combined with the geo-statistical
method was applied to upscale the in situ observations.

To be specific, the spatial distribution of DSR over rugged
terrains is highly correlated with the topography, which has
been quantitatively interpreted in the MRT model. Considering
its wide applications, we introduce several key terrain para-
meters from the model to our interpolation method; including
the Boolean shadow factor �, the cosine angle between the
incident ray and the slope surface normal cosis and the
sky view factor Vd. These parameters can be determined in
advance given the DEM and the solar position. However,
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it is hard to obtain the irradiance components on flat sur-
faces over rugged terrains and thus we have to treat the
irradiance on the flat hilltop as inputs for the MRT model
(Section II-B). But to interpolate and upscale the point-scale
DSR, the observations at the limited flat surfaces cannot
represent the whole conditions over a pixel-scale region.
To make use of more observations on the widely-distributed
slope surfaces, we developed the semi-empirical interpolation
algorithm as follows:

DSRinterpolated = C1 × � × cosis + C2 × V d + C3. (8)

The algorithm has a similar form with the MRT model to
partially retain the physical principle. It indicates that the
interpolated DSR is the sum of in situ terrain parameters
weighted by three coefficients (C1−3) assuming to be constant
over a pixel. The coefficients can be interpreted as the inputs
for the MRT model but their values can be quite different
from the observed irradiance on the flat hilltop. At least
three equations are required to retrieve them, which means
that more than three ground-based observations are demanded
on different slopes. Through this way, more information
over rugged terrains can be incorporated into DSR interpo-
lation. A global optimal method, Shuffled Complex Evolution
(SCE-UA) [54], was applied to obtain the optimal coefficients
at different times. All the coefficients were set beyond zero
to represent positive contributions of the three components to
the interpolated DSR.

Given the limited number of equipment and the spatial
variation of atmospheric and topographic conditions, the loca-
tions of ground stations should be carefully selected to make
the coefficients capable of representing the average irradiance
reaching to each slope. Ideal station locations can be decided
by the Monte Carlo method and the LESS model. In this
framework, DSR simulated by LESS was used as the reference
truth. The Monte Carlo method was applied to carry out the
random selections of ground stations at accessible locations.
First, regions occupied by trees and steep slopes were removed
from the possible locations with the help of the pseudo-color
image provided by Landsat8-OLI, true-color image supplied
by Google Earth, and the slope gradients retrieved from DEM.
Detailed procedures are explained in Section II-B. Second, we
randomly scattered a given number of points, which equals the
number of stations, over the accessible locations at one time.
Third, at the randomly selected locations, point-scale DSR
values were extracted from the simulated DSR to mimic the
ground-based observations. Considering the representativeness
of point-scale observations, simulations were performed under
different atmospheric conditions involving varied visibility,
relative humidity, and ozone thickness over a long period.
And then we applied the semi-empirical model to interpolate
the point-scale DSR. The interpolated results were compared
with the reference truths provided by the LESS simula-
tions. The discrepancy between them was recorded. Finally,
steps 2 and 3 were repeated millions of times until the expected
accuracy was achieved or the iteration number reached the
predetermined threshold. During the procedure, the selected
locations with the least discrepancy were treated as the optimal

stations. Besides, additional ground stations were set up on
diversified slopes for the validation of interpolated DSR.

We assume that the pixel-scale DSRregion can be decom-
posed to a deterministic spatial pattern DSRpattern and a sto-
chastic residual R, given by

DSRregion = DSRpattern + R (9)

where DSRpattern is the spatial average of the interpolated
DSR over a region. It represents the component of pixel-scale
DSR dominated by the deterministic topography configura-
tions. And R reflects the average discrepancies between the
interpolated and the real DSR at each slope, which is deter-
mined by the stochastic atmospheric conditions. In practice,
the real DSR given by ground observations is not acces-
sible everywhere. The Ordinary Kriging method [55] was
applied to interpolate the residuals with the limited ground
stations. It is reasonable to assume that the residual component
is spatially correlated, typically indicating the small-scale,
“noisy” variation mainly resulting from cloud effects. Based
on the hypothesis of second-order stationary, the interpolated
residual can be estimated through the semi-variogram which
is expressed as [56]

γ (h) = 1

2n

n∑
i=1

[R(xi) − R(xi + h)]2 (10)

where R(xi ) represents the residual at location xi and h is the
distance between the two stations. Multiple fitting functions
including the spherical, exponential, and Gaussian algorithms
have been proposed to derive a continuous variogram, which
is characterized by three parameters: nugget, sill, and range.
Once the theoretical variogram is obtained, the residuals can
be interpolated to predict R, which is the average of all the
R(xi). The final DSRregion is the sum of DSRpattern and R,
and can be treated as an unbiased and optimal estimation of
pixel-scale DSR.

D. Pixel-Scale Validation Method of DSR

The upscaled DSR serves as the reference truth to directly
validate the satellite products retrieved from Himawari-8 and
MODIS. The products were marked as clear or cloudy
by the meteorological measurements using all-sky cameras.
We avoided the use of cloud-screening products to diminish
the uncertainties of satellite data. When compared against
the Himawari-8 products, the upscaled DSR was averaged
within a 10-minute time window around the time from 8:00 to
18:00 with 1-h interval every day. When validating the MODIS
DSR, the time window was set as 30 minutes around the
MODIS 3-h product time. The validation was performed
from October 30 to November 30, 2018. The index used to
assess the validation results were similar to those applied in
Section III-B, which include R2, RMSE, and ME.

III. RESULTS AND ANALYSIS

In this section, we will give a detailed analysis about
the point-scale validation results, the performances of ground
observations, the corresponding interpolation and upscal-
ing results, and the pixel-scale validation assessments.
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Fig. 6. Comparison between the DSR simulated by LESS, MRT, and ground
observations on August 15, 2015. Slopes 1, 2, and 3 indicate east-facing,
south-facing, and west-facing slopes, respectively.

First, the point-scale DSR extracted from the LESS sim-
ulation is validated using ground-based observations. Sec-
ond, the process of locating ground stations for upscaling is
demonstrated. Third, the point-scale DSR is interpolated and
validated by additional ground-based measurements. Finally,
a reliable pixel-scale DSR data set is yielded and applied to
validate the MODIS and Himawari-8 DSR products.

A. Evaluation of the LESS Model

As the LESS and MRT models are unable to consider
the cloud effects on DSR, we only give an example of the
validation results on a cloud-free day. As shown in Fig. 6,
the DSR simulated by LESS is in good consistency with
the observations on slopes and the MRT model. Compared
with the ground observations, slight overestimation occurs on
the east-facing slope in the afternoon. On the west-facing
slope, there are obvious differences in the morning, especially
at the midday. The best match takes place on the south-
facing slope with only a short period of deviations around
the midday. Compared with the MRT model, the results show
greater consistency on the three slopes. On the east-facing and
the south-facing slopes, the DSR simulated by MRT is more
deviated from the ground observations than that simulated by
LESS. On the west-facing slope, the two models are highly
correlated.

Quantitative analysis with ground observations is provided
in Table I. The simulations on three slopes all show a strong
correlation to the observations with R2 above 0.995. But the
RMSE values on two slopes both exceed 30 W/m2 except
that on the south-facing slope. Several possible reasons are
responsible for the considerable discrepancy. One explanation
is that the terrain reflected irradiance is susceptible to the
surface albedo, which is set as a constant value of 0.2 based
on sampled observations, failing to reflect the real spatial and
temporal variation of the surface reflectance. Another reason
is that the inclination and orientation angles of radiometers
differ from the slopes and aspects derived from DEM. It can
be attributed to the imprudence in locating the instrument
planes or the misrepresentation of the true local topography

TABLE I

QUANTITATIVE VALIDATION OF THE DSR SIMULATED BY LESS

Fig. 7. Intercomparison between the LESS and MRT models at various times
and places. The color scale represents the point quantity.

by crude DEM. By contrast, the DFD index indicates that
the best similarity between the modeled and observed diurnal
curves occurs on the east-facing slope. Concentrating on the
trend or prediction of DSR over a time period, DFD acts
as a favorable index to evaluate the modeled results. Despite
the discrepancies in instantaneous DSR validation, the ME on
three slopes is all less than 30 W/m2. As a result of the lack
of sufficient observation data for comprehensive evaluation,
we further implement the cross-validation between the LESS
and MRT models at various times and places. As shown
in Fig. 7, the two models are in great consistency with
R2 higher than 0.99 on various slopes and RMSE around
15 W/m2. However, large discrepancies occur on the left bot-
tom with the MRT simulations fixed at around 80 W/m2 while
the LESS simulations ranging from 80 to around 280 W/m2.
The reason is that the LESS model is able to consider the half-
shadowing within a pixel, while the MRT model treats a pixel
as sheltered or not-sheltered. Therefore, at around sunrise and
sunset, the MRT model will underestimate the DSR at some
pixels. The result proves that the LESS model is more reliable
and satisfies our needs for providing a priori information to
the following study.

B. Allocation of the Ground Stations

Based on the verified LESS model and the proposed inter-
polation and upscaling method, we used the Monte Carlo
method to decide the optimum number and locations of ground
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Fig. 8. Upscaling errors change with the number of ground stations. The
box plot in red is used to depict the statistical characteristics of upscaling
errors. The five horizontal lines from upper to lower indicate maximum, 75th
percentile, median, 25th percentile, and minimum values. The red plus markers
represent outliers while the black cross markers indicate the mean values of
absolute errors over a cloud-free day.

stations. Fig. 8 gives an example of the upscaling errors
over a cloud-free day. Absolute errors show the discrepancies
between the upscaling results and the pixel-scale DSR derived
from the LESS model. The box plots reflect the temporal
distributions of instantaneous errors over a day. The average
errors are not more than 15 W/m2 for the instantaneous DSR.
With the increase of ground stations, large errors can be
slightly suppressed but not avoided due to the uncertainties
embedded in the Monte Carlo simulation. The settings of the
expected accuracy (20 W/m2) and the number of iterations
(1 million) were tentative at this procedure. Regardless of
the random errors, Fig. 8 highlights the prominent advantage
of the proposed method, which can curb the overreliance on
ground-sampling density in DSR upscaling. It is evident that
four ground stations are sufficient to achieve the acceptable
accuracy level with the average error below 10 W/m2 for
upscaled DSR in theory.

After clarifying the upscaling method’s sensitivity to the
number of ground stations, three factors were taken into
account in allocating the ground stations. First, in light of the
distance between trees and radiometers demanding ten times
larger than their elevation difference, the regions dominated
and effected by trees were regarded as prohibited locations
for ground stations. Second, steep slopes with gradients larger
than 35 ◦ were abandoned considering the difficulty of setting
up instruments [Fig. 9(a)]. Third, hardly can we manage to
retrieve the coefficients in (8) with any variable equal to zero
at all ground stations. The most likely condition is that all
the slopes we choose are shaded in the morning or evening,
making it impossible to estimate C1 and DSR on sunlit
slopes. Therefore, the regions without shadowing at sunrise
and sunset are required [Fig. 9(b)]. The intersection regions
of the satisfactory and required locations are demonstrated
in Fig. 9(c). In view of all the constraints, the expected
accuracy was set with RMSE below 45 W/m2 according to

the validation results at point-scale. And the iteration number
is set as 10 million for the Monte Carlo method to avoid the
aforementioned uncertainties. The ideal locations for ground
stations were determined with the least differences between
the interpolated and modeled DSR under variant atmospheric
conditions at different times. Given the field conditions and
experiment resources, four radiometers were finally set up
at the optimized locations (Stations 1–4) for interpolation
and upscaling. Three additional stations (Stations 5–7) were
installed at the possible locations [Fig. 9(a)] for validation
of the interpolated DSR as shown in Fig. 9(d). Detailed
information of the seven ground stations is exhibited in the
Appendix.

C. Performances of the Interpolation and Upscaling Method

As illustrated in Section II-C, the coefficients are
retrieved through the observed DSR at four ground stations
[Stations 1–4 in Fig. 9(c)]. On a cloud-free day (November 13,
2018), daily variation of the three coefficients is demonstrated
in Fig. 10(a). The curve of C1 resembles the sinusoidal line
of DSR on flat surfaces, indicating the diurnal cycle of DSR
dominated by the solar position. The curves of C2 and C3

exhibit slightly random fluctuations over a day arising from the
variation of atmospheric conditions. Based on the coefficients
and the pre-calculated terrain parameters, the DSR pattern is
demonstrated in Fig. 10(b). To illustrate the topographic effects
on DSR, the observations at the flat hilltop are presented as
comparison. Although both of them show similar trend over a
day, obvious discrepancies are barely smoothed at a kilometer-
scale pixel. The undulated topography prevents a small portion
of DSR reaching to the surfaces before noon, but a slight com-
pensation is rendered in the afternoon. Such a phenomenon
can be explained by the topographic characteristics over the
2 km × 2 km study area, where the west-facing slopes are
more clustered than the others. Moreover, the spatial hetero-
geneity is strongly enhanced as depicted by the gray shadow
region and the coefficient of variance (Cv) in Fig. 10(b), At
noon, the standard deviation reaches the peak due to the large
value of DSR. We use Cv, which is the standard deviation
divided by the mean value, to further demonstrate the daily
variation of the spatial heterogeneity. As the time gets closer
to the noon, the SZA decreases and makes energies more
uniformly distributed in the area due to fewer places obscured
by mountains. More detailed analysis can be found in our
previous research [44]. The result highlights the necessity to
accommodate topographic effects into DSR interpolation and
upscaling.

Furthermore, the residuals at each station were calculated
and then applied to the Ordinary Kriging method to obtain
the R in (9). The accuracy of R is not guaranteed with
sparsely located ground stations. However, the spatial variation
of atmospheric conditions is not significant on cloud-free
days. The residuals at different slopes are relatively small and
consistent, making it reasonable to overlook the uncertainties
caused by insufficient samplings. It is advantageous to evaluate
our method on cloud-free days. As demonstrated in Fig. 11,
the pixel-scale DSR is composed of the R and DSR pattern,
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Fig. 9. Process of locating ground stations. (a) Possible locations (in blue) after removing steep slopes and trees. (b) Required locations without shadowing
at sunrise (in yellow) and sunset (in light red), respectively, and the intersection region (in deep red). (c) Intersected locations of the possible locations and
the required locations. (d) Final locations of ground stations.

Fig. 10. Retrieved coefficients and DSR pattern over a cloud-free day. (a) Variation of coefficients over a day. (b) Comparison between the DSR pattern and
the measured DSR on a flat hilltop corresponding to the left vertical axis. The gray shadow region indicates the spatial variation of the interpolated DSR with
one standard deviation around averages. The coefficient of variance (Cv) indicates the spatial heterogeneity of DSR (corresponding to the right vertical axis).

which plays a dominant role in the upscaled result. Regardless
of minor contributions at most times, the residuals partially
compensate for the errors around sunrise and sunset, when
the abrupt change of radiation is hard to be captured.

D. Validation of the Interpolated DSR

Due to a lack of reliable pixel-scale DSR data sets, valida-
tion of the interpolated DSR serves as an indirect approach
to evaluate the proposed upscaling method. It is achieved
by additional observations at Stations 5–7 [Fig. 9(c)] as a

comparison with the interpolated values. As demonstrated
in Fig. 12(a), the observed and estimated DSR show favorable
consistency at Stations 1–4 with R2 beyond 0.99 and RMSE
below 25 W/m2 over the cloud-free days during a month.
Although a small number of points deviate from the diagonal
line, the overall result proves that the retrieved coefficients
are applicable at pixel-scale. As demonstrated in Fig. 12(b),
the errors climb slightly at Stations 5–7 with R2 beyond
0.985 and RMSE below 45 W/m2. Obvious deviations mainly
expose at the left bottom of the diagonal line with relatively
small values of DSR. Such a phenomenon again reveals that
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Fig. 11. DSR pattern, pixel-scale DSR (corresponding to the left vertical
axis), and the residuals (corresponding to the right vertical axis) over the
2 km × 2 km study area on a cloud-free day.

great uncertainties are inevitable around sunrise and sunset
time. Another small magnitude of bias along the diagonal
line possibly stems from the local disturbance by clouds or
embedded errors in the coefficients, which are unlikely to be
subtle appropriate for all the slopes. As the errors of point-
scale validation can reach 44 W/m2 due to uncertainties in
topographic parameters and in situ observations (Table I),
the interpolated error is acceptable and our method is applica-
ble to pixel scale. Furthermore, the residual R can be used to
decrease these interpolation errors in DSR upscaling.

To give a whole picture of the upscaling results, the 2 km
× 2 km DSR on cloud-free days is depicted in the temporal
domain as shown in Fig. 13. From October 30 to November
30, 2018, the total radiation reaching to the surfaces has
experienced a steady decrease, while the diurnal variation of
DSR was similar on each day. Small fluctuations occurred on
occasion as a result of the disturbance by clouds or abrupt
change of atmospheric conditions. At most time, the interpo-
lated errors are less than 20 W/m2 for instantaneous DSR. But
the discrepancies become significant around sunrise and sunset
without exception, which is consistent with the result in Fig.12.
It indicates that the problems embedded in the calculation of
interpolated DSR rather than the uncertain external factors.
The inaccuracy of terrain parameters, especially the shadow
factor, is to be blamed for considerable errors. On one hand,
it is hard to capture the abrupt change of shadows without
pinpoint DEM data. On the other hand, the uncertainties
are irradicable in locating the radiometers planes. Therefore,
the errors propagate from the terrain parameters to the coef-
ficients and the interpolated DSR through (8). The histogram
in Fig. 13 indicates that the errors are not more than 30 W/m2

at most times and the average error is 20 W/m2. At around
4% of the total time, the errors exceed 60 W/m2, which are
acceptable for instantaneous DSR estimation. As the temporal
scale changing from instantaneous to hourly and daily and
the spatial resolution varying from point-scale to pixel-scale,
the interpolated errors will be significantly suppressed [35],
[57]. In light of this, the upscaled DSR has the potential to
become an accuracy-accepted data set for the validation of
satellite products.

E. Evaluation of the Satellite Products

The ground observations were upscaled to the 5 km × 5 km
study area to validate the satellite products of Himawari-8 and
MODIS. The all-sky DSR is taken into account despite the
uncertainties in estimating the residual R on cloudy days.
Fig. 14 shows the temporal variation of the upscaled and
satellite-derived DSR over a month. In general, the MODIS
product shows better consistency with the upscaled DSR.
Obvious overestimations can be found around the midday,
especially under the clear-sky conditions since November 12.
The reason can be partially attributed to the ignorance of
topographic effects as the product matches better with the
observed DSR on the flat hilltop. In fact, the method used in
the MODIS product assumes that the aerosol optical depths for
the “clearest” observation are known and its surface reflectance
can be determined under Lambertian assumption [46].
The method treats the negative surface reflectance of the blue
band as an observation containing cloud shadows. However,
the topographic sheltering can be another possibility. Ignoring
topographic effects may lead to large uncertainties on DSR
estimation. Moreover, occasional underestimations occur on
cloud-free and cloudy days throughout the month, which
display less regularity and can be explained by random errors.
The daily variation of the Himawari-8 DSR matches well
with the upscaled DSR since November 7, though detailed
fluctuations caused by clouds are smoothed by the 1-h tem-
poral scale. But concentrating on the cloud-free days from
October 30 to November 6, abnormal underestimations expose
the considerable uncertainties of Himwari-8 products. Refer-
ring to the meteorological data measured by all-sky cameras,
the land surfaces were covered by snows on the clear days.
But the study area was marked as cloudy by the cloud-
screening product of Himawari-8, which conforms with our
previous study indicating the overestimation in cloud products
of Himawari-8 [58]. It proves that the mistaken detection
of clouds and snows may decrease the accuracy of DSR.
Moreover, the parameterization method used in the Himawari-
8 DSR product assumes that the effects of clouds and clear
atmosphere can be decoupled. The planetary atmosphere
is modeled as a clear sky atmosphere positioned above a
cloud layer [45]. Although the method is simple to operate,
the uncertainties should not be ignored. As the method is
derived from the estimation of photo-synthetically available
radiation (PAR) at the ocean surface, the topographic effects
are also ignored, which further decreases the product’s accu-
racy over rugged terrains.

Scatter plots of the remotely sensed products and the
upscaled observations on cloud-free days and cloudy days
are presented in Fig. 15. The MODIS DSR product shows
the best consistency with the upscaled DSR on cloud-free
days. The R2, ME, and RMSE are 0.977, −0.459 W/m2, and
41.254 W/m2, respectively. On cloudy days, the errors grow
larger and the scatter points become more dispersed around
the regression line. It indicates that the uncertainties in DSR
retrieval are strengthened by clouds. Under both conditions,
the MODIS product exhibits a slight underestimation, which
requires further evidence by adding more validation data in
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Fig. 12. Validation of the interpolated DSR on cloud-free days during a month. (a) Consistency between the estimated DSR and the observations at Stations
1–4 used for retrieving coefficients. (b) Consistency between the interpolated DSR and the observations at Stations 5–7 used for evaluating the interpolated
accuracy.

the future. The Himawari-8 DSR product shows obvious errors
on both cloud-free days and cloudy days, with RMSE around
60 W/m2. It is uncommon that the errors on cloud-free days
are larger than those on cloudy days. The mean errors over
a month are −17.083 and −7.858 W/m2, respectively. Such
a phenomenon may be attributed to the mistaken detection of
snows as clouds on clear days. On the whole, the two satellite
DSR products are reliable at most time. The accuracy of the
MODIS DSR data is higher than that of the Himawari-8 DSR.
The uncertainties of them are considerable, underscoring the
importance of better estimations on atmospheric conditions
and topographic effects.

IV. DISCUSSION

A. Cloud Effects

Although the upscaled DSR on cloudy days was applied to
validate the satellite products, the feasibility of the validation

method is obscure under such conditions. On cloudy days,
the DSR pattern reflects the regional average values dominated
by topography configurations, but the fluctuations caused by
cloud effects are not ignorable at different ground stations.
In theory, more ground stations contribute to the estimation of
fluctuations and thus increase the accuracy of the residual R.
In practice, the insufficient samplings undermine the outcome
of the Ordinary Kriging method. Still, Fig. 16(a) is presented
to reflect cloud effects on DSR with the existing resources.
Compared with DSR on cloud-free days, the contribution
of residuals is more significant on cloudy days. With the
increasing intensity of fluctuations, the residuals become larger
indicating the enlarging differences between DSR pattern
and the pixel-scale true values. Since the true values are
inaccessible, the interpolated DSR at point-scale is validated
at different temporal scales. As demonstrated in Fig. 16(b),
with the lowering of temporal resolutions, the average error is
reduced and the distributions of errors become more clustered.
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Fig. 13. Pixel-scale DSR on cloud-free days during a month. The labels on x-axis correspond to the orders of dates on the time axis. The y-axis represents
the daytime, while the z-axis represents the pixel-scale DSR calculated by the interpolated and upscaling method. The markers’ color indicates the validation
errors of interpolated DSR, whose distribution is demonstrated by the histogram at the upper-right corner.

Fig. 14. Validations of the satellite DSR products on all-sky conditions. The gray solid line represents the observed DSR on the flat hilltop. The blue solid
line indicates the upscaled DSR over the 5 km × 5 km study area. The red point and the brown cross indicate the 3-hourly interpolated and the instantaneous
DSR provided by MODIS. The dashed purple line indicates the 1-h DSR provided by Himawari-8. The validation results are performed from October 30 to
November 30, 2018.

In terms of instantaneous DSR, the average error remains
equivalent to that in Fig. 13, though considerable errors take
up a larger proportion. It proves that the interpolation method
can be extended to all-sky conditions and the DSR pattern
succeeds in representing the deterministic spatial average over
a pixel-scale region. As a tradeoff between resolution and
accuracy, 3-h averaged DSR is recommended as an ideal
data set for the validation of satellite products under all-sky
conditions. We hope that such a conclusion could offer far-
reaching insight to the future production of standard data sets
aiming at radiation validations over rugged terrains.

B. Comparison With the Stratified Sampling

Stratified sampling method has been widely adopted in
spatial sampling procedures, which can also be applied to

locate ground stations and upscale point-scale measurements
to pixel-scale. Claiming to have the potential in optimal
capture of the variability within a region [59], [60], the strati-
fied sampling strategy is selected as a comparison with our
method. Prior to sampling, the study area was subdivided
by auxiliary terrain parameters including slope, aspect, and
Vd, which have the most significant influence on DSR over
rugged terrains. Fig. 17(a) demonstrates an example of seven
strata classified by the K-means method. Ground stations were
chosen randomly within each stratum. The pixel-scale DSR is
the sum of each in situ data weighted by the proportion of
its representative zone. The DSR data sets simulated by LESS
were treated as relative true values to evaluate the stratified
sampling method. As shown in Fig. 17(b), the RMSE indicates
upscaling errors over a cloud-free day. With the increase of
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Fig. 15. Validations of the satellite DSR products on cloud-free days and cloudy days. (a) and (b) Comparison between the MODIS DSR and the upscaled
DSR. (c) and (d) Comparison between the Himawari-8 DSR and the upscaled DSR. The red solid line is the regression line of the scatter points. The purple
dashed line is the 1:1 line.

Fig. 16. Upscaled DSR and validation results of the interpolated DSR on cloudy days. (a) DSR pattern, pixel-scale DSR (corresponding to the left vertical
axis), and the residuals (corresponding to the right vertical axis) over a cloudy day. (b) Cloud effects on the interpolated accuracy changing with temporal
resolutions. The colored regions represent distributions of interpolated errors over a month, with the cross markers as average errors. Every colored region
(histogram) is normalized individually so that the distribution shapes can be compared among different temporal scales.

station numbers (strata), the error line shows a decreasing trend
with variant speed. The RMSE values are susceptible to the
number of stations from 3 to 6, indicating large errors caused
by insufficient sampling. When the station number exceeds 17,
the RMSE levels off to stable values as enough samplings are
collected. The stratified sampling method is more dependent
on station numbers and shows inferior accuracy than that of
our method, which indicates that four ground stations are
sufficient to achieve the acceptable accuracy level. In other

words, the proposed interpolation and upscaling method have
a great advantage over the traditional geostatistical algorithms
in estimating pixel-scale DSR over rugged terrains.

C. Limitations and Further Study

It is undeniable that several limitations exist in our study.
One of them is to use the Ordinary Kriging method in
the prediction of residuals when sufficient samplings are
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Fig. 17. Upscale DSR using stratified sampling method. (a) Strata divided by terrain factors. (b) Effects of the number of ground stations on upscaling errors.

TABLE II

INFORMATION OF THE GROUND STATIONS

Fig. 18. Terrain parameters. (a) Spatial distribution of slope. (b) Spatial
distribution of aspect. (c) Histogram of slope values. (d) Histogram of aspect
values. Red dashed lines: averages of slope and aspect values.

inaccessible under constrained experimental resources.
On cloud-free days, the problem seems inconsequential as
the proportion and spatial variation of the residuals are
insignificant. While on cloudy days, the residuals correspond
with the radiation fluctuations caused by clouds, which show
strong spatial heterogeneity. The most effective approach for
enhancing the accuracy is to incorporate more observations
at different slopes. The accompanied question is the locations
of these stations, which require further study to take the

distribution of clouds into consideration. The parameters per-
taining to cloud characteristics will be created and introduced
to the current validation methodology. Another potential
limitation stems from the reliability of upscaled DSR, which
proves to be optimal and unbiased in theory but is unlikely to
be examined by direct validation. As a compromise, additional
observations at three ground stations were applied to evaluate
the interpolated DSR in our study. More observations demand
to be collected at different slopes to improve our confidence
in the interpolated and upscaled results. The accumulation
of long-time series observations will further ameliorate the
reliability of pixel-scale validation results. In general, we will
continue our experiments to compensate for the lack of data
and to probe into further study on cloud effects.

V. CONCLUSION

Estimation of DSR is of great importance in global energy
budget and climatic modeling. Rugged terrains have a strong
influence on the energy, making the traditional flat-surface
assumption unreasonable for estimating high-resolution DSR
in mountainous areas. Although many topographic radiation
models have been built up and corresponding satellite
products have been issued for years, effective validation
methods are absent for rugged terrains. It can be attributed to
the lack of reliable field observed data, standard experiment
procedures, and mismatch of spatial scales between point-
scale observations and satellite products. Therefore, we
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propose a computer-simulation-based validation methodology
accompanied by a guideline for radiation measurements over
rugged terrains.

Prior to the interpolation and upscaling of DSR, a radiative
transfer model, LESS, was utilized as a tool for providing
large-scale DSR as the reference truth. A point-to-point val-
idation was performed to guarantee its reliability. We car-
ried out field experiments to obtain point-scale observations.
In the procedure of radiation measurements, the planes of
radiometers were set exactly parallel to the underlying slopes.
High-resolution DEM data and pre-defined spectral parameters
served as essential inputs for the LESS model. The results
showed that though the abrupt change of radiation was hard
to be captured around sunrise and sunset time, the modeled
and observed DSR exhibit good consistency at most time. The
LESS satisfied our needs for pixel-scale DSR estimation.

Based on the verified LESS, we proposed a spatial inter-
polation and upscaling method of DSR over rugged terrains.
A semi-empirical model was created to interpolate DSR
by assimilating key terrain parameters, which is the core
of our method. Based on the reference truth values from
LESS, the ideal number and locations of ground station were
chosen by Monte Carlo method. The coefficients for the
semi-empirical model were obtained from the various ground
observation we elaborately located. The Ordinary Kriging
algorithm was applied to extend the model’s feasibility by
considering the variation of atmospheric conditions over a
region. The validation results revealed that the average error
for interpolated DSR was around 20 W/m2 under all-sky
conditions and 10 W/m2 for upscaled DSR in theory. Although
considerable errors occurred around sunrise and sunset time,
coarse temporal resolutions could cover up the instantaneous
discrepancies. As a trade-off between resolution and accuracy,
3-h averaged DSR was recommended as an ideal data set for
the validation of satellite products at kilometer-scale pixel. The
MODIS and Himawari-8 DSR products were chosen to be
validated, whose accuracies were acceptable at the most time
with correlation coefficients exceeding 0.94. But the uncertain-
ties were considerably arisen from the inaccurate estimations
of atmospheric conditions and the ignorance of topographic
effects. Comparing with the traditional geostatistical methods,
we only need a small number of ground stations to interpolate
and upscale DSR with ideal accuracy. Such an advantage is
crucial to DSR validation over rugged terrains, where the nat-
ural conditions deteriorate the difficulties of field experiments.

In general, this article answers some of the essential ques-
tions in the field validation over rugged terrains. It sheds light
on how to interpolate and upscale ground-based observations
to match the spatial scale of a remote sensing pixel. Since
we can no longer ignore topographic effects on satellite
products, we hope that our research can provide instructional
suggestions for reasonable DSR validation at kilometer-scale
over rugged terrains.

APPENDIX

Key terrain parameters were retrieved from the DEM data.
Fig. 18 gives an example of the slope and aspect distribu-

tions over the 2 km × 2 km study area in Fig. 1(a). The spatial

distribution of them demonstrates that the area is characterized
by strong heterogeneity of topography, which fulfills our
research objectives. The histograms further reveal that typical
terrains can be found within the area, with slopes varying from
gentle to steep and aspects covering every orientation. Other
terrain parameters, such as the Boolean shadow factor � in (2)
and the sky view factor Vd in (3), were calculated with ray-
tracing algorithms in our study. For shadow factor, each pixel
is treated as the start of a ray which is in the solar direction.
The elevations of the pixels on the ray are recorded and if
the ray does not pass the center of those pixels, interpolation
of adjacent pixels’ elevation will be necessary. With the
recorded elevation and the horizontal distance between the
targeted pixel and other pixels on the ray, elevation angles
can be calculated. If the values of each elevation angle are
smaller than solar elevation angle, the targeted pixel will not
be shadowed by surrounding pixels. Otherwise, the binary
coefficient will be set to 0. For sky view factor, the largest
elevation angle between the targeted pixel and surrounding
mountains is searched in 16 directions. With the distance
between target and surrounding slopes increasing, more slopes
will be omitted, and thus we add compensatory factors to
weight these 16 directions. As the calculation of interpolation
and trigonometric functions is more efficient compared with
traditional algorithms equally concerning for every direction,
this method is applied to our study.

The ground observations in Fig. 2 were measured at differ-
ent stations, whose information is provided in Table II. The
CNR4 net radiometers (Kipp&Zonen), consisting of a pyra-
nometer pair and a pyrgeometer pair, were used to measure
DSR whose wavelength ranges from 300 to 2800 nm. Before
the experiment, all the radiometers were calibrated with a
MR-60 net radiometer (EKO) to guarantee the consistency
of measurements. The observed data sets were processed
with rigorous quality control. We abandoned the abnormal
data which resulted from instrumental problems such as low
electricity and deviated observed planes caused by winds.
The radiation curves which look smooth and consecutive are
assumed to be the clear days’ observations. Furthermore,
the pictures taken by all-sky camera are used to check any
possible cloud.
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