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A B S T R A C T   

Spatiotemporal fusion has provided a feasible way to generate fractional vegetation cover (FVC) data with high 
spatial and temporal resolution. However, when the currently available spatiotemporal fusion methods are 
applied over agricultural regions, they usually underestimate high FVC values at the peak vegetation growth 
stage with medium FVC values as base data. This mainly results from inconsistencies in the temporal variations 
between fine- and coarse-resolution data if substantial temporal changes occur in vegetation. Therefore, a Spatial 
and Temporal Fusion method combining with Vegetation Growth Models (STF-VGM) was proposed to address 
this problem in this study, which incorporates vegetation growth models into the fusion process. Unlike other 
spatiotemporal fusion methods that mainly rely on changes in coarse-resolution data for prediction, STF-VGM 
fully utilizes available coarse- and fine-resolution time series data, including uncontaminated information in 
cloud/cloud shadow contaminated images. By establishing vegetation growth models with time series data, a 
conversion relationship between coarse- and fine-resolution FVC that changes along with the nonlinear vege
tation change process can be extracted. STF-VGM makes prediction based on this variable relationship. A typical 
agricultural region located in the North China Plain was selected as the study area. The validation results 
indicated that the prediction accuracy for high FVC values was significantly improved using STF-VGM compared 
to the commonly used Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and 
Flexible Spatiotemporal DAta Fusion (FSDAF) methods (STF-VGM: coefficient of determination (R2) = 0.9491, 
root mean square error (RMSE) = 0.0650, average difference (AD) = -0.0092; ESTARFM: R2 = 0.9341, RMSE =
0.1127, AD = -0.0631; FSDAF: R2 

= 0.9224, RMSE = 0.1110, AD = -0.0599). The satisfactory performance of 
STF-VGM was also achieved in predicting FVC values at other vegetation growth stages (early growth stage: R2 =

0.8277, RMSE = 0.0440, AD = 0.0027; rapid growth stage: R2 = 0.9183, RMSE = 0.0844, AD = 0.0500). In 
addition, STF-VGM also has the potential to improve the spatiotemporal fusion accuracy of other vegetation 
parameters and vegetation indices, which will be evaluated in the future.   

1. Introduction 

Fractional vegetation cover (FVC), referring to the fraction of green 
vegetation seen from nadir, is an important parameter to characterize 
vegetation conditions in the horizontal direction (Camacho et al., 2013; 
Jia et al., 2016). Agriculture monitoring is one of the main application 
fields of FVC (Jia et al., 2018). In the agricultural region, FVC follows the 

strong seasonal change patterns of crops and can be highly variable 
within a short period (Atzberger, 2013). Since the growth of crops and 
agricultural activities mostly occur at small scales, the fine-resolution 
monitoring of crop conditions is necessary. These characteristics of 
agricultural monitoring lead to the requirements for reliable FVC data 
with both high spatial and temporal resolutions. 

Remote sensing provides an effective way to generate FVC data due 
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to its inherent ability to repeatedly observe the Earth’s surface with wide 
coverage. There is a variety of remote sensing data for FVC generation, 
from low spatial resolutions (e.g., Advanced Very High Resolution 
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer 
(MODIS), and SPOT VEGETATION) (Bullock, 1992; Gutman and Igna
tov, 1998; Jia et al., 2015; Propastin and Erasmi, 2010) to medium and 
high spatial resolutions (e.g., Landsat, Sentinel-2, and GaoFen-1 (GF-1)) 
(Hu et al., 2020; Jia et al., 2016; Tao et al., 2019; Wang et al., 2017) and 
from multispectral to hyperspectral (e.g., AVRIS, Hyperion, and HJ-1) 
(Zhang et al., 2013). Each sensor has its advantages and limitations. 
Commonly used large-scale FVC products are mainly derived from low 
spatial resolution data, such as the POLarization and Directionality of 
the Earth’s Reflectances (POLDER) (Roujean and Lacaze, 2002), Me
dium Resolution Imaging Spectrometer (MERIS) (Baret et al., 2006), 
Carbon Cycle and Change in Land Observational Products from an 
Ensemble of Satellites (CYCOLPES) (Baret et al., 2007), GEOV1 (an 
improved product based on CYCOLPES) (Baret et al., 2013), and Global 
LAnd Surface Satellite (GLASS) (Jia et al., 2015; Liang et al., 2013) FVC 
products. Although these products can provide frequent monitoring, the 
spatial resolutions ranging from 300 m to 6 km prevent them from 
capturing detailed surface features that are necessary for regional ap
plications at fine resolution. FVC generated from medium and high 
spatial resolution data is well suited to describe the spatial details, but its 
ability to collect frequent observations is usually not comparable to that 
of low spatial resolution data. The difficulty in obtaining high resolution 
data over both temporal and spatial dimensions from single satellite 
sensor has promoted the development of spatiotemporal fusion 
methods, which generate synthesized data with high temporal fre
quency from coarse-resolution (high temporal but low spatial resolu
tion) data and rich spatial details from fine-resolution (low temporal but 
high spatial resolution) data (Zhu et al., 2018). With the recent emer
gence of new satellites, such as Sentinel-2 and GaoFen-1 Wide Field 
View (GF-1 WFV), the trade-off between spatial and temporal resolution 
has no longer been the main obstacle to obtaining high spatiotemporal 
resolution data. However, due to the late launch of these satellites (e.g., 
GF-1 WFV was launched in 2013 and Sentinel-2 was launched in 2015), 
there are still limitations in acquiring historical dense time series data 
from sub 100 m sensors for long-term studies. In addition, contamina
tions from clouds, cloud shadows and other unfavorable weather con
ditions can lengthen the time interval between two valid observations, 
which is generally longer than a month instead of the designed short 
revisit cycles. Therefore, spatiotemporal fusion is still of great signifi
cance for FVC monitoring in agricultural regions. 

A number of spatiotemporal fusion methods have been proposed 
over the past several years. Based on at least one pair of coarse- and fine- 
resolution data acquired on the same date or temporally close dates, 
typical fusion methods can predict the high spatial resolution data on 
desirable dates as long as the corresponding coarse-resolution data are 
available, so as to improve the monitoring frequency at high spatial 
resolution. Spatiotemporal fusion was originally designed for land sur
face reflectance data, such as the Spatial and Temporal Adaptive 
Reflectance Fusion Model (STARFM), which was proposed by Gao et al. 
(Gao et al., 2006). STARFM conducts prediction by adding a weight 
combination of temporal changes derived from neighboring coarse- 
resolution pixels to the fine-resolution pixels on base date (the date 
with a known pair of coarse- and fine-resolution data). Coarse-resolution 
pixels that are mixed by lesser land cover type can get higher weights 
and contribute more to the prediction. Therefore, STARFM is more 
suitable for homogeneous landscapes. To improve the application ability 
in heterogeneous areas, STARFM was modified to various methods, such 
as the Spatial Temporal Adaptive Algorithm for mapping Reflectance 
CHange (STAARCH (Hilker et al., 2009)), the Enhanced STARFM 
(ESTARFM (Zhu et al., 2010)), Robust Adaptive Spatial and Temporal 
Fusion Model (RASTFM (Zhao et al., 2018)), Inpainting-based Steering 
Kernel Regression Fusion Model (ISKRFM (Wu et al., 2017)). Because of 
the involvement of the weight function, these STARFM-like methods are 

commonly categorized as weight function-based methods (Zhu et al., 
2018). Based on the increasing demand for monitoring vegetation dy
namics using time series data at high temporal resolutions, these 
STARFM-like approaches have been extended to directly fuse the 
vegetation indices and vegetation parameters, such as Normalized Dif
ference Vegetation Index (NDVI) (Tian et al., 2013), Leaf Area Index 
(LAI) (Houborg et al., 2016), and FVC (Tao et al., 2019). Unmixing- 
based methods, another type of widely used spatiotemporal fusion 
method, estimate the values of fine-resolution pixels or the changes in 
fine-resolution pixels by unmixing coarse-resolution pixels using linear 
spectral unmixing theory. Because there may be large errors in the 
spectral unmixing process (Zhu et al., 2018), unmixing-based methods 
are usually combined with constraint rules or other methods, such as 
weight function-based methods. The Flexible Spatiotemporal DAta 
Fusion (FSDAF) algorithm is a representative of this type (Zhu et al., 
2016). FSDAF combines the ideas of spectral unmixing analysis and 
weight assignment, having advantages in fusion tasks when changes in 
land cover type occur. Recently, FSDAF has been modified and improved 
to several methods, such as the improved FSDAF method for time series 
NDVI production (IFSDAF) (Liu et al., 2019b), the modified FSDAF 
method that uses downscaled MODIS data as input (Zhai et al., 2020), 
and the enhanced FSDAF method that considers subpixel class fraction 
change information (SFSDAF) (Li et al., 2020). In addition, various 
recent studies have focused on the temporal evolution in coarse- 
resolution data and utilized the entire coarse-resolution time series 
dataset instead of only using the coarse-resolution data on few pair dates 
and prediction date. For example, Liu at el. (Liu et al., 2018) proposed a 
modified ESTARFM method that extracts phenological information from 
coarse-resolution time series data to guide the similar pixel selection. 
STGDFM (Kim et al., 2020), a recently proposed method, uses the land- 
cover-specific temporal profiles from coarse-resolution time series to 
consider the temporal change information. 

All these methods can increase the density of fine-resolution data in 
the temporal dimension and assist in vegetation monitoring. However, 
these methods face challenges if strong temporal changes in fine- 
resolution pixels cannot be fully captured by the corresponding 
coarse-resolution pixels. This problem is particularly evident when these 
spatiotemporal fusion methods are used for agricultural regions. For 
instance, in an agricultural area where many residential patches of 
various shapes and sizes are randomly distributed, the information in a 
mixed coarse-resolution pixel is contributed by residential patches with 
slight changes and crops with substantial changes during the growing 
season (e.g., from medium FVC to high FVC values). Therefore, the large 
changes in crops are difficult to observe fully with coarse-resolution 
data. For most spatiotemporal fusion methods, the fusion process is to 
reproduce the variations that occur in fine-resolution pixels. However, 
the acquisition of such variations with these methods relies entirely on 
the variations in coarse-resolution pixels during the prediction period. 
STARFM considers the linear weighted combination of coarse-resolution 
variations as the predicted variations in fine-resolution pixels. 
Unmixing-based methods, such as FSDAF, obtain the variations that 
occur in fine-resolution pixels by unmixing the variations in their cor
responding coarse-resolution pixels. Even though some residual 
compensation terms are added to modify the results, the errors caused 
by spectral unmixing still have a great impact on the final prediction. 
The fusion methods that use coarse-resolution time series also face such 
limitations. To overcome this problem, auxiliary fine-resolution infor
mation needs to be considered. ESTARFM includes the information on 
the changes in fine-resolution data in the prediction instead of using 
only the changes in coarse-resolution data. However, the assumptions of 
linear reflectance changes and the constant conversion coefficient in 
ESTARFM are not appropriate for the significant nonlinear changes that 
exist during the prediction period. Therefore, due to the assumptions 
and inherent designs of the abovementioned methods, their perfor
mances are unsatisfactory when temporal changes in coarse- and fine- 
resolution pixels occur to different degrees. In particular, because of 
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the inadequacy of capturing the strong fine-resolution variations, there 
may be significantly underestimated predictions on the peak vegetation 
growth stage if the medium values are used as baseline. Furthermore, 
cloud contamination is frequently present at the peak vegetation growth 
stage in agricultural regions; thus, the fusion accuracy must be signifi
cantly improved in such situations. 

To cope with the abovementioned problems and improve the 
spatiotemporal fusion accuracy of FVC, a Spatial and Temporal Fusion 
method combining with Vegetation Growth Model (STF-VGM) is pro
posed in this study, which incorporates vegetation growth models into 
the fusion process. In addition to coarse-resolution time series data, the 
available fine-resolution time series data, including partly uncontami
nated data, are also employed in STF-VGM. Based on time series FVC 
data, vegetation growth models at coarse- and fine-resolutions are built, 
and the nonlinear vegetation changes are considered. Then, a conver
sion relationship between coarse- and fine-resolution FVC data that 
changes along with the vegetation growth process can be obtained 
through the vegetation growth models, and the prediction process is 
based on this variable relationship. To assess the effectiveness of STF- 
VGM, ESTARFM method and the unmixing-based method FSDAF are 
compared in this study. The GaoFen-1 Wide Field View (GF-1 WFV) 
sensors launched by China provide multispectral data with 16 m spatial 
resolution, which are valuable data sources for describing small objects. 
Therefore, FVC derived from GF-1 WFV reflectance data are selected as 
the fine-resolution data. For the coarse-resolution FVC data, the avail
able GLASS FVC product, which was generated from MODIS and AVHRR 
reflectance data, is a suitable choice. 

2. Method 

2.1. Estimating FVC from GF-1 WFV data 

There are three main types of FVC estimation methods from remote 
sensing data, including empirical methods, pixel unmixing methods, and 
physical model-based methods (Jia et al., 2016). Considering its good 
generalization ability, a physical model-based method is adopted to 
estimate FVC from GF-1 WFV reflectance data, which is described in 
detail in a previous study (Tao et al., 2019). The development of this 
method consists primarily of three parts. First, based on the radiative 
transfer model PROSAIL (Jacquemoud and Baret, 1990; Jiménez-Muñoz 
et al., 2009; Verhoef, 1984), a simulated dataset containing FVC and the 
corresponding vegetation canopy reflectance under various conditions is 
generated. Then, the simulated dataset is used to train a random forest 
regression (RFR) model to learn the relationships between FVC and 
canopy reflectance. Finally, the trained RFR model is used to estimate 
FVC from real GF-1 WFV reflectance data. Because the effectiveness and 
accuracy of this FVC estimation method have been verified in a previous 
study (Tao et al., 2019), its performance is not discussed here. 

2.2. STF-VGM 

Fig. 1 shows a flowchart of the proposed STF-VGM method. The 
input data include all the available coarse- and fine-resolution FVC data 
during a specific period (e.g., one crop growing season). The dates when 
fine-resolution FVC data are available are denoted as (⋯,tbase1,tbase2,tbase3,

Fig. 1. Flowchart of STF-VGM.  
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tbase4,⋯), and the pairs of coarse- and fine-resolution FVC data on these 
dates are denoted as (⋯,Cbase1,Cbase2,Cbase3,Cbase4,⋯) and (⋯, Fbase1,

Fbase2, Fbase3, Fbase4, ⋯), respectively. The other dates in the coarse- 
resolution data time series when the corresponding fine-resolution 
FVC data are not available are denoted as (⋯,tpre− n,⋯,tpre− 1,tpre,tpre+1,⋯ 
, tpre+n, ⋯), and the coarse-resolution FVC data on these dates are (⋯,

Cpre− n,⋯,Cpre− 1,Cpre,Cpre+1,⋯,Cpre+n,⋯). STF-VGM can be divided into 
three parts: vegetation growth model fitting, preliminary FVC predic
tion, and final FVC prediction. In the first part, the vegetation growth 
model for each coarse- and fine-resolution pixel is fitted using the time 
series data. The input fine-resolution FVC image does not need to be 
entirely free of clouds, but there should be at least four valid values at 
different times for each fine-resolution pixel to fit the vegetation growth 
model. For the preliminary FVC prediction, each input coarse–fine pair 
is a “base pair” and can generate its corresponding result at the pre
diction date, which is considered as the “preliminary prediction”. Spe
cifically, there are three major steps in this part. The first step is the 
selection of similar pixels for each fine-resolution pixel. The second step 
is the weight calculation for similar pixels. The third step is the esti
mation of preliminary predictions using the conversion coefficient that 
changes with the nonlinear vegetation growth process. These three steps 
are conducted for each base pair separately, and multiple preliminary 
predictions(⋯, F̂base1,pre, F̂base2,pre, F̂base3,pre, F̂base4,pre,⋯) can be obtained. 
In the calculation of the final FVC prediction Fpre, all preliminary pre
dictions are combined with their temporal weights. The details of these 
implementations are introduced in the following sections. 

2.2.1. Vegetation growth model 
The vegetation growth model describes the characteristics of the 

temporal changes in vegetation. The construction of a reasonable 
vegetation growth model is a key step to ensure the prediction accuracy 
of the proposed method. To date, two types of vegetation growth models 
have been developed: the first type includes mechanical models with 
clear physical mechanism, reflecting the nature of vegetation growth 
(Jones et al., 2003; Ritchie, 1985; Boogaard et al., 1998); the other in
cludes empirical models based mainly on statistical analyses of time 
series data (Bindraban, 1999; Wu et al., 2003). However, the complexity 
of the natural principles and the large number of input parameters make 
mechanical models inconvenient to use. Empirical models are more 
flexible and easier to build than mechanical models due to the accessi
bility of time series data (field measurements or remote sensing prod
ucts). Therefore, an empirical model is adopted in this study. As an 
intrinsic parameter describing vegetation conditions (Wang et al., 
2016), FVC is suitable for constructing a statistical vegetation growth 
model because it changes regularly with the vegetation growth process. 
The modified Verhulst logistic equation (Lin et al., 2003) is selected to 
construct the vegetation growth model: 

FVC =
d

1 + exp(a × t2 + b × t + c)
(1)  

where a, b, c and d are coefficients that can be fitted using FVC time 
series data and t is the day of year (DOY). 

For each coarse- and fine-resolution vegetation pixel, a unique model 
is established. The widely used Levenberg-Marquardt (LM) algorithm, 
which combines the steepest descent and the Gauss–Newton methods, is 
employed to fit the model parameters (Lourakis, 2005). It is meaningless 
to fit vegetation growth models for non-vegetation pixels or parse- 
vegetation pixels with low FVC values and inapparent temporal 
changes. Therefore, a threshold is set to determine whether a fit is 
required. Considering the observed valid FVC values for each pixel are 
obtained during the whole growing season, if the average of all valid 
FVC values of a fine-resolution pixel is less than 0.15, its vegetation 
growth model will not be fitted. The FVC changing curves of such pixels 
are directly obtained by the temporal interpolation function. 

2.2.2. Estimation of preliminary prediction 
For simplicity, suppose there is one pair of coarse- and fine- 

resolution data Cbase and Fbase acquired at tbase and one coarse- 
resolution data Cpre acquired at tpre. The task of estimating a pre
liminary prediction is to generate a synthesized fine-resolution image 
F̂base,pre at tpre from the data at tbase.The main idea can be represented as 
the following formula: 

F̂base,pre = Fbase +ΔF (2) 

The preliminary FVC prediction F̂base,pre is the sum of the FVC value at 
tbase and the fine-resolution variation (ΔF) between tbase and tpre. 
Accordingly, to estimate F̂base,pre, ΔF should be first calculated. 

Due to the heterogeneity of the land surface, most of the coarse- 
resolution pixels are mixed by multiple signals from various land 
cover types. The diversities in inter-class and intra-class make the fine- 
resolution pixels within the same coarse-resolution pixel show 
different variations between tbase and tpre. Therefore, the conversion 
coefficient, indicating the ratio of the FVC change in a fine-resolution 
pixel to the FVC change in the corresponding mixed coarse-resolution 
pixel (Zhu et al., 2010), is used to estimate the changes in different 
fine-resolution pixels. The conversion coefficient for each fine- 
resolution pixel is unique. Due to the consideration of the nonlinear 
growth pattern of crops, the conversion coefficient in STF-VGM is var
iable following the process of crop growth, which is the key of STF-VGM. 

STF-VGM follows the idea of weight function-based methods that 
predict a pixel value using the auxiliary information from its neigh
boring fine-resolution similar pixels (referred to as similar pixels here
after) and their corresponding weights. 

In a given local window, ΔF at the central target pixel is predicted by: 

ΔF(x, y) =
∑N

i=1
Wi × Vi ×

(
Cpre(xi, yi) − Cbase(xi, yi)

)
(3)  

where (x, y) represents the central target pixel, w is the size of the local 
window centered at (x,y), (xi, yi) represents the ith similar pixel and N is 
the number of similar pixels, respectively. C means the resampled 
coarse-resolution data whose spatial resolution is the same as that of the 
fine-resolution data, and Cpre and Cbase represent the data acquired on 
prediction date and base date. Wi is the weight for the ith similar pixel. 
Vi is the conversion coefficient at the ith similar pixel. 

To get the key parameters (Wi and Vi) in Eq. (3), three steps are 
implemented as the following sequence: selection of similar pixels, 
weight calculation of similar pixels and estimation of preliminary pre
diction using the variable conversion coefficient. These processes are 
described in detail in the following subsections. 

2.2.2.1. Selection of similar pixels. Integrating the information from 
neighboring similar fine-resolution pixels helps to improve the fusion 
accuracy and remove the cell boundaries from coarse-resolution data in 
the fine-resolution prediction (Gao et al., 2015). Similar pixels play an 
important role in two aspects of STF-VGM. One aspect is to obtain the 
conversion coefficients between fine- and coarse-resolution data for 
their central pixels and themselves, and the other is to reduce the un
certainty in the prediction. It is worth noting that the growth stage of 
vegetation is constantly changing. Although FVC between two pixels are 
similar on one date, such similarity is not promised on other dates. 
Therefore, the criterion for similar pixel selection on a base image Fbase 
in this study is: (a) the pixel values are similar to the central pixel on 
Fbase, and (b) the temporal changing trajectories of pixels should be close 
to that of the central pixel. 

Fig. 2 shows a schematic diagram of the similar pixel selection for a 
pixel. The selection principle is based on the following equations: 

Sbase(xl, yl) = |Fbase(xl, yl) − Fbase(x, y)| (4)  
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Sall(xl, yl) =
∑m

j=1
|Fj(xl, yl) − Fj(x, y)| (5)   

Rank(xl, yl) = RankSbase (xl, yl) × RankSall (xl, yl) (8)  

Rank = {Rank(x1, y1),Rank(x2, y2),⋯,Rank(xl, yl),⋯,Rank(xw2 , yw2 )} (9)  

where Fj(j = 1, 2,…,m) denotes the jth fine-resolution FVC image in the 
time series, m is the number of fine-resolution FVC images. The subscript 
of x and y represents the identification of a pixel within the search 
window. For example, (x1, y1) is the first neighboring pixel of the central 
target pixel (x, y) within the search window, and 

(
xl, yl

)
represents the 

lth one (Fig. 2). Sbase(xl, yl) is the absolute FVC difference between 
(
xl, yl

)

and (x, y) on the base date, and Sall(xl, yl) is the sum of the absolute FVC 
difference between 

(
xl, yl

)
and (x, y) on all dates during the time series of 

fine-resolution FVC. These two indicators reflect the similarity between 
(
xl, yl

)
and (x,y). Each fine-resolution pixel in the search window has its 

own Sbase and Sall. All the pixels in the search window are sorted from 
small to large based on Sbase and Sall, respectively, and the two vectors 
RankSbase and RankSall contain the corresponding sorting orders of (x1,y1),

(x2,y2),⋯,(xl,yl),⋯,(xw2 ,yw2 ). As the example shown in Eq. (8), RankSbase 

and RankSall are combined through multiplication, and a vector Rank 
containing the combination result can be obtained. The first N (the 
number of similar pixels) pixels with the smallest Rank values are 

selected as the final similar pixels for Fbase(x, y). The introduction of 
sorting order vectors and their multiplication ensures that Fbase still plays 
an important role in the selection of similar pixels when considering the 
information from all available fine-resolution FVC data. 

Fig. 3 shows a comparison between three principles: selecting the 
first 20 pixels with the smallest RankSbase (Principle 1), RankSall (Principle 
2) and Rank (Principle 3) as similar pixels, respectively. The asterisks 
(denoted as ‘*’) are true FVC of the selected pixels on the five fine- 
resolution data acquisition dates, and one color represents one pixel. 
The curves are the fitted vegetation growth curves of each pixel and can 
reflect the temporal change. For the base date marked as red in Fig. 3, 
the FVC values of pixels selected based on RankSbase differ little on this 
date, whereas they are quite different on other dates, indicating that 
these selected pixels show inconsistent phenological changes and fail to 
meet the second criterion for similar pixels. Although pixels selected 
based on RankSall are similar on each date, their differences on base date 
are slightly larger than those of pixels selected based on RankSbase (Fig. 3 
(b)). While pixels selected based on Rank not only have little difference 
on base date like Principle 1, but also show similar temporal changing 
trajectories, indicating the advantages of using Rank for similar pixel 
selection. 

2.2.2.2. Weight calculation of similar pixels. Different similar pixels have 
different contributions to the prediction of the central pixel value. 
Therefore, a weight coefficient for each similar pixel is necessary. 
Because the FVC values of the selected pixels are generally very similar, 
the FVC similarity between the central pixel and similar pixels cannot 
provide effective guidance for the weight assignment. Therefore, the 
weight for a similar pixel is determined according to the spatial distance. 
Pixels spatially closer to the central pixel have higher weights. The 
weight Wi for the ith similar pixel can be described as follows: 

Wi =
1/Di

∑N

i=1
(1/Di)

(10)  

Di = 1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x)2
+ (yi − y)2

√

/(w/2) (11) Fig. 2. Schematic diagram of the similar pixel selection for a pixel.  

Fig. 3. The fitted vegetation growth curves of the selected 20 similar pixels for the same target pixel based on the three selection principles: RankSbase (a), RankSall (b) 
and Rank (c). The asterisks (denoted as ‘*’) in same color represent the FVC values of the same selected similar pixel on its different acquired dates. 

RankSbase =
{

RankSbase (x1, y1),RankSbase (x2, y2),⋯,RankSbase (xl, yl),⋯,RankSbase (xw2 , yw2 )
}

(6)  

RankSall =
{

RankSall (x1, y1),RankSall (x2, y2),⋯,RankSall (xl, yl),⋯,RankSall (xw2 , yw2 )
}

(7)   
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where N is the number of similar pixels, Di is the spatial distance be
tween the central pixel (x, y) and the ith similar pixel (xi,yi), which can 
be calculated from Eq. (11). The value 1 and (w/2) are introduced to 
normalize the spatial distance such that Di always ranges from 1 to 
1+

̅̅̅
2

√
in different search window sizes. 

2.2.2.3. Estimation of preliminary prediction using the variable conversion 
coefficient. The conversion coefficient Vi is defined as: 

Vi =
ΔFi

ΔCi
(12)  

where ΔFi and ΔCi are the fine- and coarse-resolution variations 
occurring at the ith similar pixel during the same period. As evidenced in 
ESTARFM (Zhu et al., 2010), Vi is constant with the assumption that the 
proportion of each endmember within the coarse-resolution pixel and 
the change rate of each endmember are stable during a relatively short 
period. The vegetation growth model can fit FVC at any date, making it 
possible to establish the relationship between coarse- and fine-resolution 
FVC over any short-term. Therefore, ΔFi and ΔCi can be obtained from 
the growth model fitting results, and Vi can be concretely described as 
follows: 

Vi =
fFitm(xi, yi) − fFitn(xi, yi)

cFitm(xi, yi) − cFitn(xi, yi)
(13)  

where fFitm(xi, yi) and fFitn(xi, yi) are the fitted fine-resolution FVC 
values of the ith similar pixel at tm and tn, respectively. cFitm(xi, yi) and 
cFitn(xi, yi) are the fitted coarse-resolution FVC values of the ith similar 
pixel at tm and tn, respectively. 

For the calculation of the conversion coefficient, similar pixels are 
utilized to reduce uncertainty. Linear regression analysis between the 
fitted coarse- and fine-resolution FVC data at tm and tn is conducted on 
similar pixels within the same coarse-resolution pixel. The slope of the 
linear regression is considered as the conversion coefficient for similar 
pixels. Similar pixels within the same coarse-resolution pixel share the 
same conversion coefficient. Because the search window size for 
selecting similar pixels is usually set to be larger than the coarse-to-fine- 
resolution ratio, similar pixels may be distributed in different coarse- 
resolution pixels. In this case, these similar pixels are divided accord
ing to their corresponding coarse-resolution pixels. Linear regressions 
for similar pixels located in different coarse-resolution pixels are con
ducted separately. 

The definition of conversion coefficient in Eq. (12) and Eq. (13) is 
suitable for short-term in which the change of vegetation can satisfy the 
linear approximation. In practice, for the given base date tbase and pre
diction date tpre, it is usually to divide the period tbase-tpre into several 
short-terms that are equivalent to the temporal resolution of coarse data. 
In this case, the conversion coefficients for these short-terms can form a 
variable Vi that changes along with the nonlinear vegetation growth. 
Specifically, assuming that tbase, tk , and tpre are three successive dates of 
coarse-resolution observations, the preliminary prediction F̂base,pre can 
be obtained by generating the interim prediction at tk. This process is 
described as follows: 

F̂base,pre = Fbase +ΔFbase,k +ΔFk,pre (14)  

where ΔFbase,k and ΔFk,pre are the fine-resolution variations during tbase-tk 
and tk-tpre, respectively, which can be calculated from their corre
sponding conversion coefficients and coarse-resolution variations 
through Eq. (3). In this way, the changes in vegetation growth could be 
described as a nonlinear pattern. 

2.2.3. Combination of multiple preliminary predictions 
Based on different base pairs, multiple preliminary predictions, ⋯,

F̂base1,pre, F̂base2,pre, F̂base3,pre, F̂base4,pre,⋯, can be generated. A final predic
tion with less uncertainty may be obtained by a weighted combination of 
these multiple preliminary predictions. The weight for each preliminary 
prediction is mainly determined by two aspects: the absolute FVC dif
ference and the temporal distance between the coarse-resolution data at 
its base date and the prediction date. The calculation process is still 
based on the search window in Section 2.2.2. Accordingly, the weight 
for a preliminary prediction F̂base,pre can be calculated by the following 
equations: 

T1base,pre(x, y) =
1/|

∑w2

l=1
Cbase(xl, yl) −

∑w2

l=1
Cpre(xl, yl)|

∑m

j=1

(

1/|
∑w2

l=1
Cj(xl, yl) −

∑w2

l=1
Cpre(xl, yl)|

) (15)  

T2base,pre(x, y) =
1/|tbase − tpre|

∑m

j=1

( ⃒
⃒tj − tpre

⃒
⃒
) (16)  

Tbase,pre(x, y) =
T1base,pre(x, y) × T2base,pre(x, y)
∑m

j=1

(
T1j,pre(x, y) × T2j,pre(x, y)

) (17)  

where (xl, yl) is the location of the lth pixel in the search window, 
Cbase(xl, yl) and Cpre(xl, yl) are the coarse-resolution FVC values at base 
date tbase and prediction date tpre, m is the number of preliminary pre
dictions as well as the number of base pairs, and Cj(xl, yl) represents the 
lth resampled coarse-resolution FVC value of the jth base pair. 
T1base,pre(x, y) and T2base,pre(x, y) are the weights calculated by the tem
poral FVC difference in coarse-resolution data and the temporal distance 
of dates, respectively. Tbase,pre(x,y), the combination of T1 and T2, is the 
final temporal weight for F̂base,pre. Based on this weight, the combination 
of multiple preliminary predictions can be described as follows: 

Fpre =
∑m

j=1

(

Tj,pre × F̂ j,pre

)

(18) 

Considering that the FVC acquired at a date too far from the pre
diction date is weakly correlated to the predicted FVC, base pairs with a 
temporal distance of more than two months to the prediction date are 
not introduced to the combination. In addition, different base pairs 
involved in Eq. (18) could lead to different accuracies of the final pre
diction. The determination of the base pairs will be discussed in the 
following sections. 

3. Case study to validate the STF-VGM method 

3.1. Study area and field-measured FVC 

Hengshui city, located in Hebei Province, northern China (115◦10′E 
~ 116◦34′E, 37◦03′N ~ 38◦23′N) (Fig. 4), is a typical agricultural region 
where the vegetation condition changes dramatically. The patches of 
cropland and human settlement area are irregularly staggered in this 
area. Thus, spatial heterogeneity also exists in this area, making it a 
suitable choice to evaluate the performance of the proposed method. 

The field-measured FVC data for winter wheat were collected at the 
sample sites distributed in 11 counties of Hengshui (Fig. 4(c)). There 
were two ground survey periods. The first period lasted from March 29, 
2017 to April 1, 2017, during which the FVC values of winter wheat 
were generally medium. The second period was from May 4, 2017 to 
May 6, 2017, and the winter wheat was at the peak growth stage with 
high FVC. Two sample sites were selected in each county. For each 
sample site, five sample points with sizes of 30 m × 30 m covering 
relatively homogeneous areas were selected. 
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3.2. Data and preprocessing 

The fine-resolution FVC data were generated from the Chinese GF-1 
WFV multispectral data, which were designed with a revisit cycle of 4 
days and a spatial resolution of 16 m. However, due to the unfavorable 
weather conditions and occasionally poor quality of the acquired data, 
the time interval between two cloud-free GF-1 WFV data for specific 
regions is generally longer than one month instead of 4 days. Therefore, 
it is necessary to conduct fusion to the GF-1 WFV-derived FVC data. 
Seven GF-1 WFV data were collected during the winter wheat growing 
season in Hengshui, and their acquisition dates are shown in the timeline 
in Fig. 5. The preprocessing of GF-1 WFV data involved radiance cali
bration, atmospheric correction and geometric correction. The method 
proposed in Section 2.2 was used to estimate the FVC from the pre
processed GF-1 WFV reflectance data. GF-1 WFV FVC data on April 26, 
2017 (DOY116), April 1, 2017 (DOY91) and March 8, 2017 (DOY67) 
were selected as the reference images for accuracy validation, which 
represented high FVC values at peak vegetation growth stage, medium 
FVC values at the fast-growing stage and low FVC values at early growth 
stage, respectively. 

The GLASS FVC product was selected as the coarse-resolution data 
due to its satisfactory accuracy and spatiotemporal continuities (Jia 
et al. 2018; Jia et al. 2019; Liu et al. 2019a,b). GLASS FVC data were 
generated from the MODIS surface reflectance product MOD09A1, with 

a temporal resolution of 8 days and a spatial resolution of 500 m. Prior to 
the production of GLASS FVC, cloud-cleared MODIS reflectance data 
were obtained by preprocessing MOD09A1 using the temporal-spatial 

Fig. 4. Geographic location of the study area is marked by the yellow rectangle in (b), and the distribution of the sample sites of field-measured FVC are represented 
by the solid green circles on the standard false color composited GF-1 WFV data in (c). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Acquisition dates of GF-1 WFV and GLASS FVC and the corresponding 
FVC values at a randomly selected position in the study area. The red asterisks 
denote the values to be predicted in the following experiments. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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filtering method developed by Tang et al. (Tang et al., 2013), which 
ensured that the GLASS FVC data were spatially and temporally com
plete. Thirteen GLASS FVC data were used (Fig. 5), and all of them were 
resampled to the same spatial resolution (16 m) as GF-1 WFV FVC data. 
Additionally, Fig. 5 shows that the acquisition dates of GLASS FVC could 
not always perfectly match those of GF-1 WFV FVC. Hence, the cubic 
spline interpolation method was used to match the acquisition dates of 
GLASS FVC and GF-1 WFV FVC. In addition, it is obvious that the FVC 
change in the coarse-resolution pixel is slight between DOY 90 and DOY 
130, while the change in the fine-resolution pixel is quite strong. This is 
a typical phenomenon of the previously mentioned situation where the 
changes in coarse- and fine-resolution pixels vary greatly. 

Three indices are selected for quantitative accuracy assessment: the 
coefficient of determination R2, root mean square error (RMSE), and 
average difference (AD). The ideal values of R2, RMSE, and AD are 1, 0, 
and 0, respectively. 

3.3. Performance comparison of different base pairs for the final 
prediction 

To evaluate the performance of different base pairs employed for the 
final prediction, experiments with one, two (before and after the pre
diction), and multiple base pairs were conducted for the three prediction 
dates at different vegetation growth stages. For simplicity and conve
nience, notations of the predictions were created to represent the 
experimental results (Table 1). Data on June 10, 2017 were not selected 
as a base pair because the vegetation condition was largely different 
from the predictions. A region with 400 × 400 GF-1 WFV pixels was 
extracted from the study area for performance comparison. 

Fig. 6 provides a visual comparison between FVC predictions on 
April 26, 2017, based on different numbers of input pairs. All the pre
dictions display generally high similarities to the actual FVC image, 
indicating the effectiveness of the proposed STF-VGM method. There is 
little difference between the four strategies to restore spatial details, 
whereas they show different performances in predicting temporal 
changes. Pre0426-1–0512 and Pre0426-2 more closely resemble the 
actual FVC. Scatter plots and quantitative assessments (Fig. 7) also 
illustrate that these two predictions achieve higher accuracies than 
Pre0426-1–0401 and Pre0426-4. Pre0426-1–0401 and Pre0426-1–0512 
are the two preliminary predictions for Pre0426-2. As evidenced by both 
the visual performance (Fig. 6) and the scatter plots (Fig. 7), Pre0426-2 is 
closer to Pre0426-1–0512 than Pre0426-1–0401. This is because the 

vegetation condition on April 26 was more similar to that on May 12, 
and the difference in GLASS FVC between April 26 and May 12 was less, 
resulting in a larger temporal weight to Pre0426-1–0512. Therefore, 
Pre0426-1–0512 plays the dominant role in the combination of the two 
preliminary predictions. Although in terms of assessment metrics, 
Pre0426-1–0512 slightly outperforms Pre0426-2 and Pre0426-4, its un
certainty is larger in some places than Pre0426-2 and Pre0426-4. The 
scatter plots (Fig. 7) show that there are some gathering points with 
obviously large deviations from the reference line near the coordinates 
of (0.3, 0.6) and (0.8,0.6) in Fig. 7 (b), whereas such points in Fig. 7 (c) 
are much less due to the integrated accurate information from Fig. 6 (a) 
near this coordinate. 

A visual comparison between Pre0401-1–0308, Pre0401-1–0426, 
Pre0401-2, and Pre0401-4 is shown in Fig. 8. All predictions capture the 
general temporal change in cropland and are visually consistent with the 
actual FVC. The overall performances of the four strategies are similar, 
although some differences also exist. Compared with the actual FVC, 
Pre0401-1–0308 (Fig. 8 (a)) overestimates some cropland around the 
human settlement area, while this phenomenon is not obvious in the 
other three predictions. Unlike other croplands in the study area, 
vegetation in the croplands with overestimation in Pre0401-1–0308 
actually did not grow from March 8 to April 1, resulting in constant low 
FVC values during this period. However, the corresponding coarse- 
resolution FVC values significantly increased from March 8 to April 1. 
Therefore, the deviation over these croplands in Pre0401-1–0308 is 
larger than those in other predictions. Although the scatter points of 
Pre0401-1–0308 are concentrated (Fig. 9 (a)), there are large over
estimations in areas with low FVC values. Pre0401-2 performs best 
among the four predictions, with the lowest RMSE (0.0844) and the 
relatively high R2 (0.9183). 

Vegetations in the study area were going through the early growing 
stage on March 8, 2017, and the FVC values were much lower than those 
on April 1 and April 26. Fig. 10 shows the prediction results with 
different base pairs on March 8, 2017. Visually, compared with pre0308- 
1–0401 (Fig. 10 (b)), pre0308-1–0210 (Fig. 10 (a)), pre0308-2 (Fig. 10 
(c)) and pre0308-5 (Fig. 10 (d)) are more similar with the real FVC 
(Fig. 10 (e)), although they slightly overestimate in some areas. pre0308- 
1–0401 shows an overall underestimation, and the predicted spatial 
details are different from the real FVC, which is mainly manifested as the 
more blurred boundaries between croplands and residential areas. The 
poor performance of pre0308-1–0401 is closely related to the base image 
on April 1, 2017. Scatter plots and quantitative assessments (Fig. 11) 
more intuitively show the performances of different base pairs. The 
accuracies of pre0308-2 and pre0308-5 are nearly equal, both higher 
than that of pre0308-1–0210 and pre0308-1–0401. Accordingly, accu
rate predictions are more accessible when using more than one base 
pair. 

3.4. Performance comparison with the ESTARFM and FSDAF methods 

Two commonly used spatiotemporal fusion methods, ESTARFM (Zhu 
et al., 2010) and FSDAF (Zhu et al., 2016), were selected as benchmark 
methods for comparison. Considering that ESTARFM requires at least 
two coarse–fine pairs as inputs for the prediction, two base pairs were 
also used in both STF-VGM and FSDAF for equitable comparison. For 
STF-VGM, the predictions with two base pairs in Section 3.3 were 
directly used in this comparison. For FSDAF, the predictions obtained 
separately from the two base pairs were combined using the method in 
Section 2.2.3. 

Fig. 12 shows the FVC predictions on April 26, 2017, using the three 
methods. FVC predictions by STF-VGM are much more consistent with 
the reference FVC than those by the other two methods. In contrast, 
ESTARFM (Fig. 12 (a)) and FSDAF (Fig. 12 (b)) produce large un
derestimations. The FVC values on April 26 were generally approxi
mately 0.9, but the FVC values on the base date of April 1 or May 12 
were approximately 0.6–0.7. For either ESTARFM or FSDAF, the fine 

Table 1 
Dates of the different base pairs for fusion.  

Prediction 
date 

Number of 
base pairs 

Dates of base pairs Notations for the 
predictions 

2017–04-26 1 2017–04-01 Pre0426-1–0401 
1 2017–05-12 Pre0426-1–0512 
2 2017–04-01 and 2017–05- 

12 
Pre0426-2 

4 2017–03-08, 2017–04-01, 
2017–05-12 and 2017–05- 
28 

Pre0426-4 

2017–04-01 1 2017–03-08 Pre0401-1–0308 
1 2017–04-26 Pre0401-1–0426 
2 2017–03-08 and 2017–04- 

26 
Pre0401-2 

4 2017–03-08, 2017–04-26, 
2017–05-12 and 2017–05- 
28 

Pre0401-4 

2017–03-08 1 2017–02-10 Pre0308-1–0210 
1 2017–04-01 Pre0308-1–0401 
2 2017–02-10 and 2017–04- 

01 
Pre0308-2 

5 2017–02-10, 2017–04-01, 
2017–04-26, 2017–05-12 
and 2017–05-28 

Pre0308-5  
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Fig. 6. FVC predictions on April 26, 2017, based on one base pair on April 1, 2017 (a), one base pair on May 12, 2017 (b), two base pairs (c), and four base pairs (d), 
as well as the actual FVC (e). 

Fig. 7. Scatter plots of the FVC predictions on April 26, 2017, based on one base pair on April 1, 2017 (a), one base pair on May 12, 2017 (b), two base pairs (c), and 
four base pairs (d). 
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Fig. 8. FVC predictions on April 1, 2017, based on one base pair on March 8, 2017 (a), one base pair on April 26, 2017 (b), two base pairs (c), and four base pairs (d), 
as well as the actual FVC (e). 

Fig. 9. Scatter plots of the FVC predictions on April 1, 2017, based on one base pair on March 8, 2017 (a), one base pair on April 26, 2017 (b), two base pairs (c), and 
four base pairs (d). 
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Fig. 10. FVC predictions on March 8, 2017, based on one base pair on February 10, 2017 (a), one base pair on April 1, 2017 (b), two base pairs (c), and five base 
pairs (d), as well as the actual FVC (e). 

Fig. 11. Scatter plots of the FVC predictions on March 8, 2017, based on one base pair on February 10, 2017 (a), one base pair on April 1, 2017 (b), two base pairs 
(c), and five base pairs (d). 
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FVC changes between the base dates (April 1, 2017, or May 12, 2017) 
and prediction date can only be predicted at approximately 0.1–0.15, 
while the actual variations might reach more than 0.2. The failure of the 
two methods in capturing the full variations in fine-resolution pixels 
leads to underestimations in their prediction results. In addition, due to 
the low predictions in the cropland where the actual FVC values are 
high, the spatial contrast between different cropland patches is not 
prominent in the predictions using ESTARFM and FSDAF. Thus, the 
restoration of spatial details by ESTARFM and FSDAF is not as good as 
that of the proposed STF-VGM method. 

Scatter plots (Fig. 13) and quantitative evaluation also confirm that 
the proposed STF-VGM method achieves the highest accuracy. The 
yellow points with high density in Fig. 13 correspond to the pixels with 
high FVC values in the actual FVC image. In the scatter plots of 
ESTARFM (Fig. 13 (a)) and FSDAF (Fig. 13 (b)), the yellow area is 
noticeably located below the 1:1 reference line, indicating that the 
predictions of these two methods are much lower than the reference. 
The yellow points in the scatter plot of STF-VGM (Fig. 13 (c)) are 
generally distributed along the reference line with the highest R2 

(0.9491) and lowest RMSE (0.0650). Furthermore, the AD (-0.0092) of 

STF-VGM is closer to zero than that of the other methods, which in
dicates that STF-VGM produces the least biased prediction. All the ac
curacy metrics illustrate that the proposed STF-VGM method can 
effectively improve the predicted FVC value at the peak vegetation 
growth stage when using medium FVC values as base data. 

For other periods (e.g., the stage when vegetation is growing 
rapidly), STF-VGM also demonstrates its superior predictive perfor
mance. Fig. 14 presents a visual comparison of the FVC predictions on 
April 1, 2017, generated by ESTARFM, FSDAF, and STF-VGM. The 
prediction fused by STF-VGM is the most consistent result with the 
actual reference FVC. The color of the cropland in the predictions using 
ESTARFM and FSDAF is greener than that using STF-VGM and the actual 
FVC, indicating that there is an overall overestimation by the two 
methods. Such overestimations can be explained by the unsatisfactory 
ability of the two methods to capture strong fine-resolution variations. 
There are two prediction periods for April 1 (from March 8 to April 1 and 
from April 1 to April 26). As shown in Fig. 5, the change of GLASS FVC 
and GF-1 WFV FVC are inconsistent during the second period (DOY91- 
DOY113). Since the reconstructions of fine-resolution variations by 
ESTARFM and FSDAF heavily depend on the coarse-resolution 

Fig. 12. FVC predictions on April 26, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c), as well as the actual FVC (d).  

Fig. 13. Scatter plots of the FVC predictions on April 26, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c).  
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variations, the low variations in GLASS FVC lead to the low predicted 
fine-resolution variations. Therefore, the FVC results, derived by sub
tracting the predicted low variations from the high base data on April 
26, are generally higher than the real FVC. Because the vegetation 
condition on April 1 was more similar to that on April 26, and the dif
ference in GLASS FVC between April 1 and April 26 was smaller, pre
diction with April 26 as base date has a higher weight to the final 
prediction. Consequently, the overestimations of ESTARFM and FSDAF 
are generated. Since STF-VGM has advantages in capturing the strong 
vegetation change, the predictions by STF-VGM are not highly over
estimated like those by ESTARFM and FSDAF. Moreover, STF-VGM 
performs well in terms of maintaining the spatial details at the bound
aries of the small cropland patches or human settlement area, whereas 
such boundaries are more blurred in the predictions using ESTARFM and 
FSDAF. 

The scatter plots and the evaluation metrics are shown in Fig. 15. The 
scatter points of FSDAF are unsatisfactorily scattered, which indicates 
that FSDAF is not effective for this experiment, while the distribution 
patterns of the scatter points from ESTARFM and STF-VGM display 
higher similarity and fit the 1:1 line better. However, STF-VGM shows 

higher accuracy than ESTARFM, with a higher R2 (0.9183), lower RMSE 
(0.0844), and an AD (0.05) closer to zero. These qualitative and quan
titative comparisons indicate that the proposed STF-VGM method is also 
capable of achieving satisfactory predictions for medium FVC values in 
the period of rapid vegetation growth and outperforms the other two 
methods. 

The above two comparisons focus on the phonological phases with 
high and medium vegetation cover. A comparison of predictions on 
March 8, 2017 can show the performances of the three methods for the 
periods with low FVC (e.g., the early stage of crop growth). From the 
visual comparison (Fig. 16), it can be seen that the results derived from 
ESTARFM and STF-VGM have high similarity and are generally consis
tent with the real FVC. While the result of FSDAF (Fig. 16(b)) is note
worthy because of the obvious anomalies with high overestimations in 
some residential areas. The evaluation metrics also correspondingly 
show the unsatisfactory accuracy of FSDAF (Fig. 17(b)). As for the 
quantitative comparison between ESTARFM and STF-VGM, although 
the former achieves slightly higher R2 and lower RMSE, the AD of the 
latter is closer to 0. In general, there is almost no difference between 
ESTARFM and STF-VGM, and the accuracy between the two methods 

Fig. 14. FVC predictions on April 1, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c), as well as the actual FVC (d).  

Fig. 15. Scatter plots of the FVC predictions on April 1, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c).  
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Fig. 16. FVC predictions on March 8, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c), as well as the actual FVC (d).  

Fig. 17. Scatter plots of the FVC predictions on March 8, 2017, generated by ESTARFM (a), FSDAF (b), and STF-VGM (c).  

Fig. 18. Validation of the FVC predictions generated by ESTARFM (a), FSDAF (b), and STF-VGM (c) based on the field-measured FVC.  
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can be considered equivalent. Accordingly, STF-VGM also performs well 
for the early vegetation stage with low FVC and rapid growth. 

3.5. Performance comparison based on the field-measured FVC 

To further validate and compare the fusion methods, field-measured 
FVC data were also used to evaluate the accuracy. To ensure the validity 
of the comparisons, the number of base pairs was also set to two for each 
method. For the first ground survey period from March 29, 2017, to 
April 1, 2017, one pair on March 8, 2017, and another pair on April 26, 
2017, were fused to obtain the prediction on April 1, 2017. For the 
second ground survey period from May 5, 2017, to May 8, 2017, the base 
dates were set to May 12, 2017, and April 1, 2017. 

The proposed STF-VGM method achieves the best overall accuracy 
(R2 = 0.7033; RMSE = 0.0823; AD = -0.0240) (Fig. 18). As shown in 
Fig. 18 (c), most of the points from STF-VGM fall close to the 1:1 line, 
and the high FVC values of the second ground survey period are well 
predicted. In contrast, the predictions generated by ESTARFM and 
FSDAF for the second period are biased low, as evidenced by all the 
points falling below the 1:1 line, which is in agreement with the results 
of the pixel-to-pixel validations in Section 3.4. This comparison further 
indicates the reliability of the proposed method in predicting high FVC 
values when using medium values as base data. 

4. Discussion 

This study aims to improve the spatiotemporal fusion accuracy in the 
agricultural region where strong temporal changes exist, especially 
focusing on the underestimation of high FVC values at the peak vege
tation growth period when using medium FVC values as the baseline. In 
most previous studies, the prediction of changes in fine-resolution pixels 
relied entirely on the information extracted from coarse-resolution 
variations. However, in periods of rapid vegetation growth, the 
changes in fine-resolution pixels representing vegetation are signifi
cantly stronger than those in mixed coarse-resolution pixels in most 
situations. It is difficult to infer accurate variations at fine resolution 
from the slight variations at coarse resolution. The proposed STF-VGM 
method introduces the vegetation growth model into spatiotemporal 
fusion and takes full advantage of the available fine-resolution time 
series information, including partly uncontaminated data. STF-VGM 
shows significant advantages in reproducing temporal variations in 
fine-resolution pixels, as evidenced by the validation results. 

For STF-VGM, addressing the inconsistency in the changes in fine- 
and coarse-resolution data is the key to improve the fusion accuracy. The 
inconsistency existing in certain areas is mainly attributed to two as
pects. One aspect is that the variation in the fine-resolution vegetation 
endmember is reduced in its corresponding coarse-resolution pixel 
because the coarse-resolution pixel is often mixed with the non- 
vegetation part, which was briefly discussed in the Introduction. The 
other aspect may be the inconsistency of the FVC data at the two reso
lutions. Spatiotemporal fusion methods usually assume that the data 
obtained from different sensors are consistent, e.g., fine-resolution data 
can be aggregated and linearly related to the coarse-resolution data 
acquired on the same date (Gao et al., 2015). However, when using these 
spatiotemporal fusion methods to generate vegetation parameters, such 
as FVC, the consistency between the input fine- and coarse-resolution 
data may not be as perfect as the assumption due to differences in the 
sensors and the inversion algorithms. Therefore, the combination of 
inconsistent data leads to a contrast between the variations in fine- 
(strong) and coarse- (slight) resolution when rapid changes exist in 
vegetation. The proposed STF-VGM method can reduce the influence of 
the abovementioned inconsistency on the predictions through the 
introduction of fine-resolution data with good observation quality. As 
discussed above, due to the existence of inconsistency between fine- and 
coarse-resolution data, there may be certain errors in the fine-resolution 
variations derived only from the temporal information at coarse- 

resolution scale compared with the actual situation. The effective in
formation of the fine-resolution pixels in the temporal dimension can be 
added as an additional constraint to the implementation of spatiotem
poral fusion, so that the derivation of the fine resolution variation does 
not only dependent on the single temporal signal from coarse-resolution 
time series data. The inclusion of fine-resolution information means that 
part of the actual fine-resolution time series information is considered, 
which can provide supplementary guidance for the construction of the 
complete fine-resolution time series. Specifically, STF-VGM involves the 
free-cloud fine-resolution data through the vegetation growth model. 
STF-VGM simulates the temporal change characteristics of vegetation 
growth at coarse and fine resolutions by establishing the vegetation 
growth model separately. The fitted curves generated from the actual 
FVC at the two resolutions are relatively independent of each other. 
Therefore, the conversion coefficient calculated from the fitted FVC 
values can reflect a relatively reliable relationship between coarse and 
fine resolutions. Even though inconsistency exists, STF-VGM can still 
capture the fine variations close to reality using the reliable conversion 
coefficients. 

In the part of estimating preliminary prediction in STF-VGM, there 
are two key steps worth being noted. One is the selection of similar 
pixels. In this subpart, the indicators RankSall and RankSbase are used to 
select the most similar neighboring pixels for the target pixel. RankSbase 

reflect the FVC similarity of pixels on Fbase. If there is only Fbase being 
used to recognize similar pixels, pixels that are at different phenological 
stages and belong to different crop species may be selected (e.g. Fig. 3 
(a)). All available fine-resolution data during the growing season are 
considered in the indicator RankSall . Accordingly, RankSall can determine 
which pixels have similar FVC change curves to the target pixel. In 
general, there are large probabilities for pixels with small RankSall of 
belonging to the same crop type as the target pixel. However, due to the 
differences in intra-class, it is not guaranteed that pixels selected by 
RankSall have the perfect FVC similarities with the target pixel at tbase (e. 
g., Fig. 3 (b)), which will also influence the prediction accuracy. Rank, 
the combination of RankSall and RankSbase , can summarize the functions of 
RankSall and RankSbase , and can find pixels that not only have same FVC 
change characteristics as the target pixel but also have high similarities 
to the target pixel on Fbase. The pixels selected by Rank are more 
consistent with the definition of “similar pixels” in spatiotemporal 
fusion and may provide positive contributions to the improvement of 
prediction accuracy. Another key point is the variable conversion coef
ficient that can change along with the nonlinear process of crop growth. 
Based on the vegetation growth model constructed at the coarse- and 
fine-resolutions, continuous curves reflecting the crop growth status can 
be obtained. With the fitting result as the support, it is easy to extract the 
conversion relationship between the coarse- and fine-resolution data at 
any time through Eq. (13). Due to the nonlinear change pattern of crops 
and the inconsistancy between coarse- and fine-resolution data, such 
conversion relationship is not stable during the vegetation growth pro
cess. Therefore, compared with the constant conversion coefficient used 
in ESTARFM, the conversion relationship derived in STF-VGM can 
change with time because of its calculability for any short period during 
different crop growth stages. 

STF-VGM provides a framework to combine multiple preliminary 
predictions calculated from different base dates. The case study in
dicates that improved predictions can be achieved using only the two 
available nearest base pairs before and after the prediction date rather 
than more base pairs. Increasing the number of base pairs does not 
necessarily lead to reduced errors. The base pairs distant from the pre
diction date are less correlated with the target FVC. The surface status at 
a certain time is related to the previous moment and closely affects the 
following moment. Therefore, data on the prediction date are most 
closely related to the nearest base pairs before and after the prediction 
date. The addition of more base pairs does not reduce the uncertainty in 
the final prediction, and the possibility of introducing error information 
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can also be increased. Therefore, instead of integrating all preliminary 
predictions, two preliminary predictions obtained based on the two 
nearest base pairs before and after the prediction date are 
recommended. 

The experiments in Section 3.4 and 3.5 compare the three methods of 
ESTARFM, FSDAF and STF-VGM. In Section 3.4, the performances of the 
three methods at peak vegetation growth stage (high FVC), rapid 
vegetation growth stage (medium FVC) and early growth stage (low 
FVC) were evaluated, respectively. For the peak vegetation growth 
stage, FVC predictions of crops on April 26, 2017 generated by 
ESTARFM and FSDAF were mainly underestimated, while STF-VGM 
showed satisfactory performance because of the relatively accurate 
predictions on the FVC between 0.7 and 1. The fusion process of 
ESTARFM, FSDAF and STF-VGM is to reproduce the variations that 
occur in fine-resolution pixels during a prediction period (ΔF). The 
underestimation of ESTARFM and FSDAF are both caused by their 
underestimated ΔF. ESTARFM converts the coarse-resolution variations 
into fine-resolution variations through a conversion coefficient (V =

ΔF/ΔC). The vegetation nonlinear change patterns are not considered in 
the construction of V. For the period from April 1 to May 12, there was a 
change inconsistency between coarse- (slight) and fine- (strong) reso
lution data, and V showed a trend of increasing first and then decreasing 
(Fig. 5). However, V calculated by ESTARFM was constant and smaller 
than the real changing V, resulting in the underestimated ΔF. FSDAF 
obtains ΔF by unmixing ΔC that occur in the corresponding coarse- 
resolution pixels. Due to the slight change in coarse-resolution pixels 
from April 1 to May 12 and the error caused by unmixing method, ΔF 
calculated by FSDAF was also smaller than the real values. In summary, 
due to the lack of consideration of vegetation nonlinear change and the 
strong dependency on coarse-resolution variations during fusion pro
cess, when vegetation changes rapidly and temporal variations in 
coarse- and fine-resolution pixels occur to different degrees, ESTARFM 
and FSDAF may fail to capture the full strong change in fine resolution 
and generate underestimated FVC predictions with only medium or low 
FVC as base data. STF-VGM has two main advantages over ESTARFM 
and FSDAF, which lead to its ability to obtain a more satisfactory pre
dicted ΔF. The first one is that STF-VGM utilizes the effective informa
tion of fine-resolution data over temporal dimension, making the 
derivation of ΔF not entirely relied on ΔC during the same prediction 
period. The second one lies in the changing conversion coefficient which 
can adapt to the vegetation nonlinear growth pattern. As for the pre
diction on rapid vegetation growth stage, the temporal change of coarse- 
and fine-resolution data were generally consistent from March 8 to April 
1 and appeared gradually different from each other from April 1 to April 
26 (Fig. 5). Due to the relatively accurate predicted ΔF during the sec
ond period (from April 1 to April 26), STF-VGM also achieved higher 
accuracy than ESTARFM and FSDAF on this stage. During the early 
vegetation growth stage, the temporal changes occurring at coarse and 
fine resolutions were both strong and showed consistent trend. The 
advantage of STF-VGM in addressing the inconsistency is not obvious for 
the prediction on this period, and STF-VGM thus achieved the equivalent 
accuracy with ESTARFM. In summary, STF-VGM can significantly 
improve the fusion accuracy for the period when the inconsistency be
tween coarse- and fine-resolution data exists, especially for the peak 
vegetation growth stage. And when the temporal changes at the two 
resolutions are generally consistent, STF-VGM can still maintain good 
performance compared with ESTARFM and FSDAF. 

There are also some limitations of the proposed method. One limi
tation lies in the ability to address abrupt changes, which is a long- 
standing problem in spatiotemporal fusion. For example, in the case 
study in Section 3.3, there is a small region with abrupt changes in the 
center of the test area between the prediction date and May 12, 2017, 
which is possibly caused by the land cover type changing from bare soil 
with low FVC to crops with much higher FVC. In this situation, the 
vegetation growth model could not provide helpful information for such 
unpredictable land cover change. The use of two input pairs before and 

after the prediction date, as recommended in the previous paragraph, 
may potentially reduce the large errors caused by abrupt land cover 
changes. Another limitation is that STF-VGM is currently more suitable 
for the fusion of one crop growing season. This is because that the used 
vegetation growth model describes the unimodal vegetation growth 
pattern. For the areas with 2–3 growing seasons throughout the year, 
STF-VGM needs to conduct fusion for each growing season separately. 
For further applications, other suitable models can also be considered 
for bimodal and multimodal crops, which will be explored in future 
work. 

The proposed STF-VGM method was investigated for improving the 
spatiotemporal fusion accuracy of FVC data in this study. STF-VGM is 
also suitable for improving the fusion accuracy of other variables related 
to vegetation, such as NDVI, LAI, and FAPAR, as long as their temporal 
changes are consistent with the growing process of vegetation. Although 
GF-1 WFV data were selected as the fine-resolution data for test, other 
satellite data, such as Sentinel-2 data, could also be fused with the 
GLASS FVC product. Moreover, jointly using GF-1 WFV and Sentinel-2 
data in one fusion framework can increase the amount of temporal ob
servations, which could largely improve the data availability for vege
tation growth model fitting. In addition, more satellite observations can 
also provide more auxiliary information temporally close to the pre
diction date, which is helpful for handling abrupt changes. 

5. Conclusion 

In this study, the STF-VGM method was proposed to improve the 
spatiotemporal fusion accuracy of FVC in the agricultural region by 
incorporating vegetation growth models, which can help describe 
nonlinear vegetation changes. Based on the available coarse- and fine- 
resolution time series data, STF-VGM can address the problem of the 
inconsistency between fine- and coarse-resolution variations and ach
ieve satisfactory performance. The experimental results fused from GF-1 
WFV FVC and GLASS FVC data by STF-VGM, ESTARFM, and FSDAF 
indicated that STF-VGM achieved the most precise temporal variations 
in fine-resolution pixels. Therefore, STF-VGM significantly improved the 
spatiotemporal fusion accuracy of high FVC values at the peak vegeta
tion growth stage compared to the commonly used ESTARFM and 
FSDAF methods. Additionally, STF-VGM also achieved satisfactory 
performance for other vegetation growth stages. Moreover, STF-VGM is 
applicable to other satellite data, e.g., Sentinel-2 data, or other variables 
related to vegetation, such as NDVI, LAI, and FAPAR. Future work will 
focus on further applications of STF-VGM in this regard. 
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