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Using Adversarial Network for Multiple Change
Detection in Bitemporal Remote Sensing Imagery

Wenzhi Zhao , Xi Chen , Xiaoshan Ge, and Jiage Chen

Abstract— Change detection by comparing two bitemporal
images is one of the most challenging tasks in remote sensing.
At present, most related studies focus on change area detection
while neglecting multiple change type identification. In this letter,
an attention gates generative adversarial adaptation network
(AG-GAAN) is proposed on multiple change detection. The
AG-GAAN has the following contributions: 1) this method can
automatically detect multiple changes; 2) it includes attention
gates mechanism for spatial constraint and accelerates change
area identification with finer contours; and 3) the domain similar-
ity loss is introduced to improve the discriminability of the model
so that the model can map out real changes more accurately.
To demonstrate the robustness of this approach, we used the
Google Earth data sets that include seasonal variations for
change detection and understanding. The experimental results
demonstrated that the proposed method can accurately detect
the multiple change types from bitemporal imagery.

Index Terms— Attention gates (AGs), bitemporal images,
domain similarity loss, generative adversarial network (GAN),
multiple-change detection.

I. INTRODUCTION

CHANGE detection is one of the most important directions
within the field of remote sensing. It aims to analyze

and quantify changes in remote sensing images at the same
geographical location over different periods [1]. Because of
its unique characteristics, change detection has been widely
used in vegetation monitoring, urban expansion, and disaster
assessment [2]. With the development of remote sensing plat-
forms and sensors, a huge amount of repeatable remote sens-
ing imagery was acquired. Compared with dense time-series
moderate spatial resolution imagery, the very-high-resolution
(VHR) images have scarce revisit data but with much more
detailed land cover information. With the increased spatial
resolution, the intraclass variation also increases, which means
that it is more difficult to obtain accurate detection results
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for conventional postclassification change detection methods
[3], [4]. Besides, atmospheric interferences and illumination
variation still pose challenges to extract useful information
from the bitemporal image pair.

Over the past few decades, intensive studies have been
devoted to identifying changes within image pairs. Among
them, the most commonly used method is machine learn-
ing, such as support vector machine (SVM), change vector
analysis (CVA) [5], and principal component analysis (PCA)
[6]. However, the remote sensing binary images affected
by solar illumination, seasonal differences, and intraclass
changes will suppress the real change information, and it is
difficult for machine learning methods to distinguish them.
The rise of deep learning algorithm provides a new solution
for remote sensing image change detection. Deep learning
methods have natural advantages in applying change detec-
tion because it can identify semantically rich high-level fea-
tures in images through hierarchical architecture [7], [8].
For instance, the fully convolutional network (FCN) uses
multiple convolutional layers to formulate the transformation
relationship between image pairs. However, FCN ignores the
spatial relationship between pixels and is not sensitive to the
targets’ detailed information. Thus, the FCN-CRF model is
proposed to solve the problem of spatial constraint. FCN-CRF
uses a conditional random field (CRF) to extract context
information to strengthen further the features extracted by
FCN. Although FCN-CRF introduces extra spatial constraints
to improve classification accuracy, it inevitably increases the
computational complexity [9]. The U-Net model combines
encoding–decoding structure with the jumping network; it
increases the robustness in spatial feature extraction through
multilayer upsampling and downsampling processes [10].
However, FCN, FCN-CRF, and U-Net are discriminative net-
works and need a large number of accurately labeled training
samples. The change detection between VHR image pairs is
often unable to meet this requirement.

Compared with the discriminative models, the generative
adversarial network (GAN) is an unsupervised/semisupervised
generative network that only requires a relatively small number
of training samples [11], [12]. At present, GAN has been
widely used in the field of remote sensing [13]. Ma et al.
[14] designed a dense residual network in the GAN network to
extract deep image features for improving the spatial resolution
of remote sensing images. Lebedev et al. [15] conducted a
detailed study on the change detection task by using pix2pix
GAN, proving the usability of the pix2pix framework on the
change detection task. Combined by the GAN and metric
learning, Zhao et al. [16] proposed a MeGAN model, which
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successfully solved the problem of insufficient detection of
regional edge details caused by a seasonal variation for image
pairs. Experimental results have shown that MeGAN is more
robust than conventional models. However, GAN networks still
need multilayer convolution operation to extract the region of
interest areas. This strategy often results in redundant calcula-
tions due to repeated feature extraction, and it is often difficult
to locate change areas with accurate boundaries. Moreover,
it is not enough to focus on change area detection, and the need
to analyze the type of changes (multiple-change detection) is
much more urgent. Liu et al. [5] added the interaction between
pixels and their adjacent areas in the compressed change vector
analysis (C2VA) method and adopted the multiscale ensemble
strategy to detect the various types. Saha et al. [17] construct
a siamese framework and use the same pretrained CNN for
semantic segmentation of bitemporal images and then conduct
a per-pixel analysis to identify variation types. Saha et al. [17]
used CycleGAN to conduct multiple-change detection, which
proved the usability of GAN models in change detection tasks.
However, GANs are easily to collapse due to the imbalance
of samples.

In general, we find that the main difficulties for
multiple-change detection are as follows: 1) how to accurately
formulate the multitype feature transitions and capture the
exact contours of change areas are quite challenging and
2) how to solve the problem of insufficient training or over-
fitting caused by unbalanced samples. To solve the above
problems, we propose the attention gates’ generative adver-
sarial adaptation network (AG-GAAN) for multiple-change
detection. Inspired by recent advances in attention mecha-
nisms, we introduced the attention gates (AGs) [18] for better
feature formulation and contour delineation of multiple-change
detection. The AG we used is a modular mechanism that
dynamically and implicitly generates the proposal regions of
the convolution framework without any additional computa-
tion. Experiment results demonstrated that AGs could improve
the ability to capture the target’s robust transition features and
make the detection results more accurate. Meanwhile, domain
similarity loss is added to the proposed model to enhance the
discriminator’s discriminability, which helps GAN reach the
Nash equilibrium [19].

The main contributions of this study are as follows: 1) an
adversarial network-based multiple-change detection model
is proposed, and it can automatically detect the changes
according to feature transition patterns and 2) the AGs and
domain similarity loss are introduced for change detection,
which increases the ability to capture the targets’ details and
improve the detection accuracy. The remainder of this article
is organized as follows. Section II introduces the algorithm
of change type detection in detail. Experimental data sets,
network settings, and experimental results are presented in
Section III. Section IV provides conclusions.

II. METHODOLOGY

A. Generative Adversarial Networks

GAN is one of the most representative generative models
and is widely used in unsupervised/semisupervised learning.
The conventional GAN consists of a generator (G(z)) and a

discriminator (D(x)). In the training process, they are in the
process of mutual confrontation. The generator accepts random
noise z and constantly upgrades itself to produce samples pZ

in order to deceive the discriminator, and the discriminator
constantly updates itself to recognize the samples whether true
or false. This process can be expressed as follows:

min
G

max
D

V (D, G)

= Ex∼pd [log D(x)] + Ez∼pz [log(1 − D(G(z))). (1)

In this formula, pd represents the real data distribution from
real data x , and z represents the input item of the generator.
The parameters θg and θd of generator and discriminator
are represented by G and D. During the training process,
the parameters of the discriminator are updated once, and then,
the parameters of the generator are also updated once, until the
convergence of the loss function. Compared with traditional
GAN, the input of CGAN is no longer a random noise z but
a picture and a control condition y. In addition, CGAN adds
L1 loss to the loss function to make the images of the source
domain and target domain as close as possible. Pix2pix GAN
is further improved by adding a skipping network structure into
the generator, making the GAN model more suitable for the
Image2Image translation task. The skipping network structure
shares the high- and low-level semantic information so that
the transformed image has better detail performance.

B. AGs Generative Adversarial Adaptation Network

The general workflow of AG-GAAN is shown
in Fig. 1. We randomly crop the original image pairs into
256 × 256 patches and then input them to the generator
to generate predictive change maps that can deceive the
discriminator. The discriminator distinguishes the change
maps coming from the generator or real labels. In the
AG-GAAN model, AGs are added to enhance the robustness
of the GAN model in determining sensitive features. AGs
utilize a modular mechanism, which can adjust the number
of layers according to requirements. It is worth noting that
the AGs are a spatial constraint mechanism that gradually
locates change areas during the training process and enhances
the discrimination ability on change types. At the same time,
domain similarity loss is added to improve the stability of
GAN model performances and ensure the generated maps and
reference ones to be similar. For the generator, we replaced
the original skip network structure with AGs, as shown
in Fig. 1(a). AGs take a shallow network as a gating vector
ki , determine the change area of each layer i from the deep
network, and remove the corresponding low-level feature
responses in the deep network qi . To formulate this process

αi = σ
(
W T

v

(
W T

q qi + W T
k ki + bq,k

) + bv

)
(2)

where σ(x) = (1/(1 + exp(x))) represents the sigmoid activa-
tion function. W T ∈ RĈ×C stands for channelwise 1 × 1 × 1
convolutions for the linear transformations of the input tensor,
and b is the bias term. Attention coefficients αi ∈ [0, 1] is
used to focus on the region of change areas. For each AG,
the activation can be represented as

attentioni = αi × ki . (3)
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Fig. 1. General workflow of AG-GAAN.

Once AGs are activated, gradients originating in the back-
ground area are determined during the backward process.
In the remote sensing change detection task, the changed
objects often have different sizes and colors. It is not enough to
rely solely on a discriminator to determine whether a region
has changed. Therefore, domain similarity loss is added to
enhance the discriminator’s ability, as shown in Fig. 1(b).
Especially, the maximum mean discrepancy (MMD) is added
to the discriminator to measure the distance between the
predicted result and the reference map

Ldomain (G(o), xt) =
N∑

n=1

�Dn(xt) − Dn(G(o))�2. (4)

xt and G(o) are change labels and prediction results by
unlabeled images respectively, and n represents the nth layer
of the discriminator. We use τn to represent the nth layer
computations �Dn(xt) − Dn(G(o))�2 in the formula. The
domain similarity can also be written as Ldomain (G(o), xt) =
τ1 + τ2 + · · · + τn . The objective function of the discriminator
can be expressed as

max
D

Ldom

= Ex,x�
[
k
(
x, x �)] + 2Ex,y [k(x, y)] + Ey,y�

[
k
(

y, y �)] (5)

where x and x � represent the change map predicted by two
random image pairs, and y and y � are their corresponding
labels. k(∗) is the kernel function that measures the similarity
between x and y. In order to enhance the discriminant ability,
the discriminator maximizes Ex,y to make the change map
generated by the generator to be more realistic. Meanwhile,
the discriminator minimizes intraclass variance through Exx�

and Eyy� . Similarly, the objective function of the generator can
be expressed as

min
G

Ldom

= Ex,x�
[
k
(
x, x �)] − 2Ex,y[k(x, y)] + Ey,y�

[
k
(

y, y �)]. (6)

Therefore, the objective function of the AG-GAAN for
multiple change detection has the following formulation:

min
G

max
D

V (D, G)

= Ex∼pd

[
log D(xt)

] + Ez∼pz [log(1 − D(G(o)))]
+Ldomain(G(o), xt) + L1. (7)

Fig. 2. Google Earth bitemporal data set with seasonal changes.

TABLE I

DETAILED CONFIGURATION ABOUT THE AG-GAAN G AND D ,
RESPECTIVELY, REPRESENT THE GENERATORS AND DISCRIMINATORS;

q , k , AND v ARE THE CONVOLUTION LAYER OF AGs, WHICH ARE
Wq , Wk , AND Wv

The first two losses are the optimization terms of GANs, and
the second is the additional optimization of domain similarity
loss. The last term is L1 loss = ∑ |xt − G(o)|. Finally, loss
terms are calculated and minimized by Adam optimizer during
the training process.

III. EXPERIMENTS AND RESULTS

A. Data Description

We use a bitemporal data set obtained from Google Earth to
demonstrate the detection capability of our proposed model,
which is provided by Lebedev et al. [15]. The data set has
three bands that describe two different seasonal variations

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 17,2021 at 05:58:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

TABLE II

MULTIPLE-CHANGE DETECTION ACCURACY NODSLOSS-GAN:GAN ONLY ADDS AGs; NO AG-GAN:GAN ONLY ADDS DOMAIN SIMILARITY LOSS

with a spatial resolution of 0.3 m, and the sizes of the
image are 2700 × 4275 pixels. As shown in Fig. 2, there
are a large number of targets that have been “increased”
and “decreased” within the image pairs that allow us to
test the ability of the model for multiple-change detection.
Although high spatial resolution images allow us to detect
small changes, still images over different seasons produce a
large number of pseudochange that interferes with detection
results. We define the emerged targets in the second image
relative to the first one as “increased,” and conversely, it is
defined as “decreased.” This letter tests the multiple changes
of buildings, including unchanged buildings, increased
buildings, and reduced buildings, which are expressed as
C1–C3, respectively.

In order to verify the performance of the proposed method,
we use SVM, CNN, and pix2pix GAN as the comparison
algorithms. It is worth noting that pix2pix GAN has a similar
structure as the proposed method, and the specific configura-
tion is shown in Table I. At the same time, in order to prove
the effectiveness of AGs or domain similarity loss, we tested
the model that only uses AGs and domain similarity loss
for comparison. To quantitatively illustrate the accuracy of
change detection, overall accuracy (OA), recall rate, and kappa
coefficient were added for accuracy evaluation.

B. Configuration and Analysis

In the experiment, we randomly cropped the original bitem-
poral data set into small patches with sizes of 256 × 256.
We took 50% of the sample data set, which is 1:500 rows
and 1:1900 columns of the original image, as the training
data. Especially, the numbers of “increased,” “ decreased,” and
background samples in the training set were 19 013, 14 468,
and 916 519 pixels. The remaining samples were used for
testing. In order to make full use of the spectral information of
the image, the six bands of the original bitemporal data were
stacked as input data for change detection.

C. Results and Comparison

Fig. 3(a)–(c) shows the prechange image, postchange image,
and manual annotation samples of the Google Earth data set,
respectively. Fig. 3(d)–(f) demonstrates the detection results
of different comparison methods, and Fig. 3(g) and (h) shows
the effects of the two modules that we proposed. The eval-
uation values are listed in Table II. Although high-resolution
images provide more detailed information, they are followed
by more pseudochanges and random noise. With this complex
background, traditional detection methods cannot identify real
changes, such as SVM in Fig. 3(d). In Fig. 3(e), the CNN
method can capture the multiple change features, but the single

Fig. 3. Comparison on multiple-change detection results. (a) Image 1.
(b) Image 2. (c) Reference map. (d) SVM. (e) CNN. (f) Pix2pix. (g) GAN
only adds AGs. (h) GAN only adds domain similarity loss. (i) AG-GAAN.
Red refers to decreased objects, and green refers to increased objects.

Fig. 4. Spatial awareness maps of the proposed AGs. (a) C3: 50, 2000, and
2500 and (b) C2: 50, 500, and 1000 of the coefficient of attention. During the
training process, the model gradually locates the increase and decrease areas.

use of the convolutional network is not enough to accurately
identify the “increase” and “decrease” regions, so the precision
value of “increase” and “decrease” types reached only 0.25 and
0.28. In addition, salt-and-pepper noise is also a problem.
In Fig. 3(f), pix2pix GAN is a typical generative model, which
does not need a large number of training samples. It can
automatically learn high-level robust features through the
deep convolution network during the confrontational process
between the discriminator and the generator. Compared with
CNN, the detection effect of pix2pix is smoother, with the
overall detection accuracy value improved by nearly 0.1, but
it is still difficult to find multiple changes. Fig. 3(g) shows
the AG-GAAN detection results only with AGs, and it can be
seen that the changed building has a more complete contour.
We also present the AGs’ spatial awareness map in Fig. 4.
During the training process, AGs gradually update and locate
the boundary of the change targets. In addition, we added
domain similarity loss to our model. Fig. 3(h) shows the
AG-GAAN detection results with only domain similarity loss;
the model can effectively reduce the seasonal noise through
the measurement between different domains. Therefore, it has
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Fig. 5. Curves of loss functions with 2500 iterations. (a) AG-GAAN.
(b) Pix2pix.

a relatively high recall value of 0.93, 0.70, and 0.21. The final
detection results of the proposed method are shown in Fig. 3(i).
The proposed method combines the advantages of AGs and
domain similarity loss and has a better detection result for each
type of change. Therefore, the recall rate of each type has a
good performance, and the average precision and kappa are the
highest among all methods. The loss curves of pix2pix GAN
and AG-GAAN are shown in Fig. 5, which can demonstrate
the efficiency and effectiveness of the proposed method.

IV. CONCLUSION

We propose an AG-GAAN model for multiple-change
detection with high-resolution bitemporal images. Compared
with conventional multiple change detection, our model
focuses on the transformation of the same objects in different
directions, such as increase and decrease. Understanding the
increase and decrease of the same objects makes their changes
easier to explain, especially in disaster assessment. Especially,
we add the domain similarity loss to the pix2pix GAN model
to improve the discriminator’s ability and help the model to
achieve the Nash equilibrium. At the same time, we added AGs
to gradually locate the change areas during the training and
suppress background interference. Experiments demonstrated
that our model can significantly improve the detection rate
of multiple change detection and understand the change for
ground targets. However, the model is greatly challenged by
the hazardous environments, such as snow cover, which needs
to be improved. In the future, we still need to pay attention to
improve the robustness recognition of target changes between
bitemporal images.

REFERENCES

[1] D. Lu, P. Mausel, E. Brondízio, and E. Moran, “Change detection
techniques,” Int. J. Remote Sens., vol. 25, no. 12, pp. 2365–2401, 2004.

[2] D. M. Browning and C. M. Steele, “Vegetation index differencing
for broad-scale assessment of productivity under prolonged drought
and sequential high rainfall conditions,” Remote Sens., vol. 5, no. 1,
pp. 327–341, Jan. 2013.

[3] F. Luo, L. Zhang, B. Du, and L. Zhang, “Dimensionality reduction
with enhanced hybrid-graph discriminant learning for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8,
pp. 5336–5353, Aug. 2020.

[4] F. Luo, L. Zhang, X. Zhou, T. Guo, Y. Cheng, and T. Yin, “Sparse-
adaptive hypergraph discriminant analysis for hyperspectral image
classification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 6,
pp. 1082–1086, Jun. 2020.

[5] S. Liu, Q. Du, X. Tong, A. Samat, L. Bruzzone, and F. Bovolo,
“Multiscale morphological compressed change vector analysis for
unsupervised multiple change detection,” IEEE J. Sel. Topics Appl.
Earth Observ., Remote Sens., vol. 10, no. 9, pp. 4124–4137,
Sep. 2017.

[6] N. Neeti and J. R. Eastman, “Novel approaches in extended princi-
pal component analysis to compare spatio-temporal patterns among
multiple image time series,” Remote Sens. Environ., vol. 148,
pp. 84–96, May 2014.

[7] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[8] M. Lan, Y. Zhang, L. Zhang, and B. Du, “Global context based automatic
road segmentation via dilated convolutional neural network,” Inf. Sci.,
vol. 535, pp. 156–171, Oct. 2020.

[9] H. Zhou, J. Zhang, J. Lei, S. Li, and D. Tu, “Image semantic segmenta-
tion based on FCN-CRF model,” in Proc. Int. Conf. Image, Vis. Comput.
(ICIVC), Aug. 2016, pp. 9–14.

[10] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual
U-net,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749–753,
May 2018.

[11] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[12] R. Hang, F. Zhou, Q. Liu, and P. Ghamisi, “Classification of hyper-
spectral images via multitask generative adversarial networks,” IEEE
Trans. Geosci. Remote Sens., early access, Jun. 25, 2020, doi: 10.1109/
TGRS.2020.3003341.

[13] R. Hang, Z. Li, P. Ghamisi, D. Hong, G. Xia, and Q. Liu, “Clas-
sification of hyperspectral and LiDAR data using coupled CNNs,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 7, pp. 4939–4950,
Jul. 2020.

[14] W. Ma, Z. Pan, F. Yuan, and B. Lei, “Super-resolution of remote sensing
images via a dense residual generative adversarial network,” Remote
Sens., vol. 11, no. 21, p. 2578, Nov. 2019.

[15] M. A. Lebedev, Y. V. Vizilter, O. V. Vygolov, V. A. Knyaz, and
A. Y. Rubis, “Change detection in remote sensing images
using conditional adversarial networks.” Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., vol. 42, no. 2, pp. 565–571,
2018.

[16] W. Zhao, L. Mou, J. Chen, Y. Bo, and W. J. Emery, “Incorporat-
ing metric learning and adversarial network for seasonal invariant
change detection,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4,
pp. 2720–2731, Apr. 2020.

[17] S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change
vector analysis for multiple-change detection in VHR images,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 6, pp. 3677–3693,
Jun. 2019.

[18] R. Hang, Z. Li, Q. Liu, P. Ghamisi, and S. S. Bhattacharyya, “Hyper-
spectral image classification with attention-aided CNNs,” IEEE Trans.
Geosci. Remote Sens., early access, Jul. 16, 2020, doi: 10.1109/
TGRS.2020.3007921.

[19] W. Zhao, X. Chen, Y. Bo, and J. Chen, “Semisupervised hyperspectral
image classification with cluster-based conditional generative adversarial
net,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 3, pp. 539–543,
Mar. 2020.

Authorized licensed use limited to: Beijing Normal University. Downloaded on June 17,2021 at 05:58:27 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TGRS.2020.3003341
http://dx.doi.org/10.1109/TGRS.2020.3003341
http://dx.doi.org/10.1109/TGRS.2020.3007921
http://dx.doi.org/10.1109/TGRS.2020.3007921

