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A B S T R A C T   

The canopy bidirectional reflectance distribution function (BRDF) plays a pivotal role in estimating the bio
physical parameters of plants, whereas soil background anisotropy creates challenges for their retrieval. Soil 
optical properties affect canopy anisotropic characteristics, especially in open-canopy areas. However, the 
remote sensing of background anisotropy is challenging due to the difficulties of information extraction in 
complex forest ecosystems and varying illumination conditions. This study develops an efficient photogram
metric technique to extract the background soil bidirectional reflectance factor (BRF) from unmanned aerial 
vehicle (UAV)-based multiangular images and to verify the need for accurate soil anisotropy information in 
canopy radiative transfer modeling. Soil BRF profiles were measured over three open-canopy sample plots from 
multiangular remotely sensed multispectral images collected with a hexacopter. As validation, reference soil BRF 
profiles were synchronously acquired by a ground-based multiangular imaging system. 

A high level of consistency between the ground- and UAV-measured soil BRF was observed with an RMSE of 
less than 0.012. Uncertainty analysis of the measured soil BRF showed that multiple scattering between sunlit 
soil in large sunflecks and foliage elements contributed less than 5%. Both results demonstrated that soil 
anisotropy can be accurately extracted from UAV multiangular measurements. To explicitly demonstrate that the 
use of soil anisotropy can reduce uncertainties in canopy radiative transfer simulations, we simulated the canopy 
BRF with Lambertian soil and with anisotropic soil using a three-dimensional (3D) radiative transfer model under 
different soil moisture content (SMC) levels, canopy cover (CC) levels and solar zenith angles (SZAs) with 
simulated realistic forest scenes. We found that less CC, lower SZAs and less SMC lead to a more significant 
influence of soil anisotropy on canopy reflectance; e.g., the reflectance bias reaches up to 0.3 in the hotspot 
direction. This illustrates that neglecting soil anisotropy can cause considerable errors in the modeling of the 
canopy BRF of open forests (i.e., CC levels of less than 0.5). The proposed technique facilitates the character
ization of anisotropic forest background soil, which is important for advancing canopy radiative transfer 
modeling and validation and for the retrieval of vegetation parameters.   

Abbreviations: AGL, above ground level; BRDF, bidirectional reflectance distribution function; BRF, bidirectional reflectance factor; CC, canopy cover; CSF, cloth- 
simulation filter; DN, digital number; DSM, digital surface model; FOV, Field of viewing; GSD, ground sampling distance; HDRF, hemispherical-directional reflec
tance factor; LAI, leaf area index; LESS, large-scale remote sensing data and image simulation framework; NIR, near-infrared; PP, principal plane; RAA, View-solar 
relative azimuth angle; SAA, Solar azimuth angle; SfM, structure from motion; SMC, soil moisture content; SZA, Solar zenith angle; UAV, unmanned aerial vehicle; 
VAA, view azimuth angle; VP, vertical plane; VZA, view zenith angle. 
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1. Introduction 

Surface reflectance anisotropy, typically described by the bidirec
tional reflectance distribution function (BRDF), is an inherent charac
teristic of land surfaces. The measure depends on surface three- 
dimensional (3D) structures, optical properties, and the sun-sensor ge
ometry. Due to the extreme difficulty of BRDF measurement in the field, 
an alternative term, bidirectional reflectance factor (BRF) has been 
proposed to characterize the reflectance anisotropy. Many semi
empirical and physically-based canopy BRDF models have been devel
oped over the past decades (e.g., Huang et al., 2009; Kuusk, 2001; Kuusk 
and Nilson, 2000; Roujean, 1992; Verhoef, 1984). The retrieval of 
canopy biophysical and biochemical variables can be achieved by 
inverting these models when directional reflectance measurements are 
available (Combal et al., 2003; Gao et al., 2003; Laurent et al., 2011; Mu 
et al., 2018; Weiss and Baret, 1999; Yan et al., 2016; Baret and Buis, 
2008). 

It is noteworthy that vegetation canopy anisotropy is a function of 
the optical and structural properties of both plants and the underlying 
background. The emphasis of canopy BRDF modeling is typically placed 
on the relationship to canopy structures and leaf optical properties, 
whereas background soil properties are given as input based on the 
simple Lambertian assumption. Generally, the reflectance of Lambertian 
soil, as the input of the canopy radiative transfer model, is measured 
from the nadir direction in field measurements. Previous studies have 
made efforts to find a practical and reliable method of forest background 
reflectance estimation from satellite reflectance data (Canisius and 
Chen, 2007; Eriksson et al., 2006; Pisek et al., 2010). However, these 
earlier attempts simplified soil properties as Lambertian for operational 
retrievals. 

Many studies have reported that soil reflectance is strongly aniso
tropic (e.g. Cierniewski et al., 2004; Jacquemoud et al., 1992; Liang and 
Townshend, 1996), and the Lambertian background assumption is 
insufficient for modeling canopy BRDF (Verhoef and Bach, 2007), 
especially in semiarid landscapes with sparse vegetation (Ni and Li, 
2000). The large gap probability of sparse vegetation canopies leads to a 
large contribution from soil to canopy BRDF (Kimes, 1991). Therefore, 
the soil anisotropy considerably affects the anisotropic characteristics of 
the discrete vegetation canopy (Zarco-Tejada et al., 2001). Pisek et al. 
(2010) found the retrieved forest background reflectance to be incon
sistent with the measured reflectance when the background has strong 
anisotropic characteristics, demonstrating the importance of back
ground anisotropy of surface variable retrievals. Generally, the inter
vention of forest background affects the overstory signal, leading to 
more difficulty with canopy variable retrievals (Canisius and Chen, 
2007; Eriksson et al., 2006; Gemmell, 2000). 

Studies have considered background soil anisotropic characteristics 
in the modeling of canopy directional reflectance to improve the accu
racy of retrievals (Pinty et al., 1998; Verhoef and Bach, 2007). For 
example, Schwieder et al. (2020) estimated above-ground biomass and 
LAI of grassland from Sentinel-2 data with a soil-leaf-canopy (SLC) BRDF 
model where the soil input was obtained by measuring reference BRF on 
adjacent pixels of bare soil. However, their soil-canopy BRDF models 
have rarely been used for practical retrievals due to the challenge of 
obtaining soil BRF from remote sensing data (Fang and Liang, 2003). 

Forest background anisotropy is traditionally measured with a field 
goniometer and spectrometer (Peltoniemi et al., 2005; Sandmeier and 
Itten, 1999). However, direct solar illumination is usually not available 
due to obstruction by trees, especially for large off-nadir angles. An 
alternative light source is needed in some cases (Peltoniemi et al., 2005). 
Besides, ground-based observations only focus on a very small area that 
might not representatively characterize the forest background (Sand
meier and Itten, 1999; Yan et al., 2012). Additionally, most ground- 
based goniometers are very heavy and require much work to assemble 
and move (Yan et al., 2012). The abovementioned factors greatly limit 
forest background measurements in the field. 

In several recent studies, unmanned aerial vehicles (UAVs) have 
been used as platforms for close-range (i.e., in the range of dozens to 
hundreds of meters) multiangular measurements (Burkart et al., 2015; 
Kuusk et al., 2014; Schneider-Zapp et al., 2019). UAVs can measure 
canopy anisotropy with improved angular sampling and high ground 
sample distance (GSD), i.e., millimeter to centimeter resolution, relative 
to satellite sensors (Roosjen et al., 2017; Zhang et al., 2020). Roosjen 
et al. (2018) and Sharma et al. (2013) employed UAV-based canopy 
BRDF measurements to retrieve the leaf area index (LAI), leaf chloro
phyll content, canopy fraction and volume by inverting a physically- 
based radiative transfer model. However, the authors could ignore the 
influence of background anisotropy due to the presence of continuous, 
homogeneous vegetation cover in their target areas. UAV-based multi
angular remote sensing has the potential to access forest background 
anisotropy from ultrahigh-resolution images over open forest areas and 
to provide new, much-needed insight into the role and effect of soil 
anisotropy. 

In this study, our objective was to develop a method to obtain the 
background soil BRF of open-canopy areas using UAV-based multi
angular images. Through a 3D radiative transfer model, named LESS 
(Large-scale remote sensing data and image simulation framework) (Qi 
et al., 2019), we explored the uncertainty of the proposed method and 
the need for accurate soil anisotropy information in canopy radiative 
transfer modeling. The feasibility and the potential value of the pro
posed method were discussed. 

2. Materials 

2.1. Experimental site 

Three open orchard plots of approximately 1000–2500 m2 with 
planted apricot or peach trees located in Huailai county, North China 
(40.34◦N, 115.78◦E) were chosen as test plots for this study (Fig. 1a, 
Table 1). For selection, flat ground surface, canopy cover level (CC, 
defined as the proportion of forest floor covered by the vertical projec
tion of the tree crowns where the within-crown gaps are excluded 
(Korhonen et al., 2006)), and background soil and tree species, and 
composition homogeneity criteria were applied. The trees were irregu
larly planted in the plots (Fig. 1b–d). The plantation landscape includes 
a collection of trees of different ages. The study area has a semi-humid 
continental climate with elevations ranging from 480 m to 485 m 
above sea level. The orchard background is composed of bare clay soil 
occasionally covered with scattered senescent leaves and grasses. It 
rained two days before the field campaign, and the experiment was 
conducted in a rainy season window. The soil surfaces beneath the 
canopy were dry with a soil moisture content of less than 18% (Table 1). 
The background soil of each plot was spatially homogeneous. The field 
campaign was conducted in cloud-free and windless atmospheric con
ditions on 30–31 July 2019. 

2.2. Acquisition of UAV data 

The DJI M600pro UAV (DJI Technology Co., Ltd. Shenzhen, China) 
equipped with a GPS, barometer, compass, and inertial measurement 
unit (IMU) was used to collect remotely sensed images. During the flight, 
the longitude, latitude, altitude, and yaw of each waypoint were 
recorded. An active gimbal was installed onto the UAV, controlling the 
pitch and roll (2D stabilization) of the camera payload to achieve the 
predetermined view angles. A multispectral camera (MAPIR survey 3 N 
RGN, manufactured by Peau Productions, Inc., San Diego, USA) moun
ted on the UAV records three spectral narrow bands with central 
wavelengths of 550 nm, 660 nm, and 850 nm. The camera integrates an 
RGN filter in front of the lens and a Sony Exmor IMX117 sensor with a 
Bayer filter. This assembly causes that the red and green channels were 
to be mixed with a certain amount of near-infrared (NIR) flux, i.e., only 
the signal of the NIR band is with high physical fidelity. The camera has 
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a focal length of 8.25 mm with a field of view (FOV) of 41◦ × 31◦ and 
4000 × 3000 pixels with the radiometric resolution of 12 bits. The 
shutter speed of the camera can be manually adapted to adapt the 
illumination. 

The aerial campaigns were performed to collect multiangular images 
for all the plots. A goniometric flight pattern capturing the plot area as 
the center of a hemisphere with a radius of 100 m was applied in the 
campaign (Fig. 2a). We developed a script to predesign waypoints and 
view angles before each flight. Transects along the principal plane (PP, i. 
e., a relative azimuth of 0◦ or 180◦ with the sun direction)) and along the 
vertical plane (VP) were applied. The waypoints were defined with an 
angular step of 5◦ from − 60◦ (backward scattering direction) to + 60◦

(forward scattering direction) in each transect. One additional angular 
observation was performed in the hotspot direction. The UAV 

automatically flew along the waypoints at a flight speed of 3 m/s, and 
the UAV-borne camera was automatically adjusted to continuously 
point towards the center of the plot. Besides, the UAV also acquired the 
images of reference panels (Lambertian surfaces with known reflec
tance) placed on an open space next to the plot before the UAV left the 
home point and after returned to the home point. 

The UAV was launched during two periods with different sun ge
ometries for each plot (Table 2), automatically flying along the pre
determined flight route. The multispectral camera had a footprint of 76 
× 57 m2 with a GSD of around 2 cm when the nadir observation was 
conducted at 100 m above ground level (AGL). The entire UAV mission 
of multiangular observations was taken during an approximately 10- 
minute-long flight. Table 2 shows an overview of our UAV-based mul
tiangular observations, accompanying by ground-based measurements. 

Fig. 1. Study area. (a) Landsat 8 OLI color-infrared image of the experimental site in Huailai County, North China. The yellow stars correspond to the plot positions. 
(b–d) Perspective views of the three orchard plots with irregularly planted trees are shown by UAV RGB images. The red squares denote the study plot borders. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Overview of the three orchard sample plots. Each field measurement is an average of approximately 10 samples.  

Sample Area (m2) Plantation Clay soil 

Species LAI Canopy cover Crown diameter (m) Tree height (m) Crown base height (m) Moisture (%) 

Plot 1 30 × 30 Apricot 2.36 0.58 3.38 3.36 0.49 15.35 
Plot 2 30 × 30 Apricot 1.71 0.34 3.08 2.91 0.65 9.18 
Plot 3 45 × 45 Peach & Apricot 2.83 0.62 2.99 2.57 0.55 17.32  
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Given that the sun moved less than 3◦ both in zenith and azimuth during 
an observation period, for the sake of simplicity, the solar zenith angle 
(SZA) and solar azimuth angle (SAA) were assumed to be constant for 
data processing. Finally, each multiangular mission produced 52 im
ages. Fig. 2b–d shows the angular distribution of the average view angle 
over the plot area of each plot. Note that the UAV images in the VP of 
Plot 1 were omitted due to an abruptly changed illumination by a small 
piece of cloud. It is also noticed that the actual flight transects appeared 
to differ slightly from the nominal ones due to uncertainties in UAV 
positioning and camera orienting. 

2.3. Acquisition of ground data 

Ground-based multiangular measurements were taken using a 
customized portable multiangular observation system illustrated in 
Fig. 3a, synchronizing with aerial measurements. The system includes a 
tripod, a pole, a rotatable arm, a pivot, and a multispectral camera 
(MAPIR survey 3N RGN) consistent with the camera on UAV. The 
rotatable arm is mounted onto the pole interface and can be adjusted to 
achieve different zenith angles according to the circular protractor on 
the pole interface. The system carried on multiangular observations at a 

Fig. 2. The flight pattern and actual view geometry. (a) Illustration of the goniometric flight pattern applied in this study, (b–d) Polar plots of the illumination 
geometry and angular distribution of the view angle during UAV-based multiangular image acquisition (b, c, and d, respectively, for Plots 1, 2, and 3). The orange 
and blue symbols refer to the averaged view geometry of the target area at the waypoints. The red stars and diamonds correspond to the sun positions during the 
flight. PP and VP represent the principal and vertical planes, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Table 2 
Overview of the UAV-based and ground-based multiangular measurements taken at three plantation plots. Abbreviations include solar azimuth angle (SAA), solar 
zenith angle (SZA), view zenith angle (VZA), principal plane (PP), and vertical plane (VP).  

Plot Date SAA [◦] SZA [◦] UAV-based multiangular measurements Ground-based multiangular measurements     

R1 Flight time PP VP VZA Operation time PP & VP VZA 

Plot 1 30.07.2019 184.21 23.5 100 m ~9 mins √ √ − 60◦ to +60◦ (interval of 5◦) ~13 mins √ − 60◦ to +60◦ (interval of 5◦) 
31.07.2019 255.47 45.5 ~9 mins √ √ ~10 mins √ 

Plot 2 30.07.2019 218.22 30.8 ~10 mins √ √ ~10 mins √ 
30.07.2019 240.66 42.8 ~10 mins √ – ~9 mins √ 

Plot 3 31.07.2019 134.44 33.5 ~9 mins √ √ ~10 mins √ 
30.07.2019 107.34 48.5 ~9 mins √ √ ~9 mins √ 

R1 refers to the flight radius of the goniometer-mode multiangular observation of the UAV, as illustrated by Fig. 2. One additional angular measurement was collected 
in the hotspot direction for each group of multiangular measurements. 
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height of 1.7 m, resulting in a nadir footprint of approximately 1.3 m ×
1.0 m. It collected multispectral images with a 10◦ zenith resolution in 
the PP and VP over approximately 10 min through manual control. 
Besides, the ground system acquired the images of the reference panels 
through manual control before the first image and after the last image 
acquired in each plane. 

The ground-based multiangular images were used to derive the 
reference BRF profiles of soil as the validation data of UAV-measured 
soil BRF. The images were firstly radiometrically calibrated as 
described in Section 2.4. Then the sunlit soil pixels in the central area of 
each image were visually selected to calculate the soil BRF by averaging 
the directional reflectance of these pixels. The extracted soil BRF profile 
was able to represent the soil BRF of the whole plot because the soil 
physical property and chemical composition are spatially homogeneous 
in such a cultivated plantation plot. 

The ground campaign also involved the measurements of leaves and 
soil spectral reflectance, soil moisture, and canopy structural parameters 
(i.e., LAI, crown diameter, tree height, and crown base height). The 
spectral reflectance of the leaves and soil were collected in the nadir 
direction using an ASD FieldSpec 3 (Analytical Spectral Devices, Inc., 
USA). Approximately ten samples were obtained for each class, and an 
average reflectance was taken after radiometric calibration (Fig. 3b). 
Soil moisture was sampled from 0 cm to 6 cm in depth using an 
impedance probe sensor with an HH2 recording device (Delta-T Devices, 
Cambridge, United Kingdom). In each plot, ten measurement locations 
were recorded for soil moisture. The LAI was measured using the TRAC 
optical instrument (3rd Wave Engineering, ON, Canada) along several 

30-m transects. Tree heights were collected using a DISTO A5 hyp
someter (Leica Geosystems AG, Heerbrugg, Switzerland). The crown 
diameter was measured by averaging two measurements taken from two 
measuring tapes laid perpendicular to each other at the largest width of 
each crown. The crown base height was recorded using a tape measure. 

2.4. Radiometric calibration 

All UAV-based and ground-based multiangular images were radio
metrically calibrated. The radiometric calibration procedure was only 
conducted for the NIR band because of its physically high fidelity. 
Firstly, raw images were imported into MAPIR camera control kernel 
software (MCC) and exported into a 16-bit lossless compression format, 
i.e., Tagged Image File Format (TIFF), ensuring the compatibility with 
image processing with common analysis software. Next, the vignetting 
effect should be theoretically corrected because it can cause a radial 
reduction in brightness towards the image edges. However, the 
vignetting effect was neglected as the pixels of the plantation plot were 
located at the central areas of each image that were marginally influ
enced by vignetting effect. Finally, the digital number (DN) values of the 
NIR image were converted to BRF values using a simplified empirical 
line regression calibration method, since the DN values have a linear 
relationship to BRF. The linear coefficients can be derived using a 
MAPIR calibration ground package containing four individual felt-like 
materials with known reflectance (2%, 21%, 27%, and 83%) served as 
the Lambertian surfaces (an example shown in Fig. 4). The average DN 
value (DNn) of nadir observation from each reference target was 
extracted from a visually selected region of interest. The coefficients a 
and b can be obtained by a linear fit (Eq. (1)): 

BRFn = a⋅DNn + b (1)  

where BRFnrefers to the nadir BRF of a Lambertian surface while a and b 
are the slope and intercept, respectively. Given that the linear co
efficients are affected by illumination flux, the radiometric calibration 
was independently executed for each multiangular mission. Fig. 3. Overview of the ground-based spectral campaign. (a) Illustration of the 

ground-based multiangular observation system. (b) Average spectral reflec
tance of leaves and soil sampled in sample plots. 

Fig. 4. An example of a linear regression model used to calibrate the digital 
number (DN) to BRF by four reference panels (Lambertian surfaces with the 
reflectance of 2%, 21%, 27%, and 83%, respectively). In this example, two 
images of the reference panels were captured during a multiangular mission, 
yielding eight data points. 
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3. Methods 

We describe a general synopsis of this study in Fig. 5 including the 
synchronized observations (UAV-based and ground-based), soil BRF 
extraction method, BRDF modeling, quantitative analyses, and simula
tions. UAV- and ground-based multiangular measurements were syn
chronously collected during a field campaign where the ground-based 
soil BRF were used to validate the UAV-based soil BRF. The soil BRF 
extracted from UAV measurements characterized the soil reflectance 
anisotropy over the whole hemisphere by adjusting a soil BRDF model 
named SOILSPECT. The modeled soil BRFs were then imported into the 
LESS model to analyze the uncertainty of UAV-based soil BRF extraction 
due to multiple scattering. Finally, the influence of soil anisotropy on 
canopy BRF was quantitatively evaluated by comparing the LESS- 
simulated canopy BRF under anisotropic and isotropic soil based on 
extending data from Jacquemoud et al. (1992). The following sub
sections provide details of the steps in Fig. 5. 

3.1. Background soil BRF characterization 

3.1.1. Soil BRF extraction from UAV multiangular images 
The extraction of soil BRF from UAV-based multiangular images 

consists of four main steps: (1) 3D point cloud and digital surface model 
(DSM) are reconstructed from multiangular overlapped images using a 
photogrammetry technique. The camera positions are also re-estimated 
during this process; (2) The geolocation of image pixels within the 
sample plot is calculated based on the collinearity restrictions between 
DSM and image pixels; (3) The pixel-wise view geometry is calculated 
using the camera positions and georeferenced pixels; (4) The sunlit soil 

pixels of plantation background is automatically extracted using the 3D 
point cloud back-projection and image segmentation. The soil BRF value 
is derived by aggregating the extracted sunlit soil pixels. These four steps 
are illustrated in Fig. 6 and are described hereafter.  

(1) Reconstruction of 3D point cloud and DSM 

The overlapped UAV-based multiangular multispectral images 
together with the corresponding geographic information of waypoints 
were imported into Agisoft PhotoScan Professional 1.4.5 (Agisoft LLC, 
St. Petersburg, Russia) to generate a 3D point cloud of the orchard 
scenario and a georeferenced DSM (Fig. 6, Waypoints POS, DSM and 
Sample point cloud). The reconstructed point cloud and DSM were 
trimmed along the border of each orchard plot. PhotoScan integrates a 
structure-from-motion algorithm (SfM, also called bundle adjustment in 
photogrammetry) and a multi-view stereo algorithm (MVS), enabling 
the identification of identical features within each image, the image 
match among images, and the re-estimation of the camera positions and 
orientations based on the waypoint POS and feature matching results. To 
facilitate feature detection and matching, color-infrared images (layer 
stacked by red = 850 nm, green = 660 nm, and blue = 550 nm) were 
processed instead of single-band images. Our processing steps are 
consistent with the standard PhotoScan processing pipeline, as can be 
found in the PhotoScan user manual. We used the high accuracy and 
reference settings for image alignment to obtain accurate camera posi
tions with a maximum Z error of less than 1 m and maximum X and Y 
errors of less than 0.5 m. After mesh and DSM building, both the DSM 
and re-estimated camera information was exported with the WGS84/ 
UTM coordinate system. 

Fig. 5. The analysis framework of this article mainly includes field campaign, method development, and LESS simulation.  

L. Li et al.                                                                                                                                                                                                                                        



ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 263–278

269

(2) Geolocation of image pixels 

The DSM of the orchard plot area (Fig. 6, Sample point cloud) was 
projected to each original UAV-based image based on collinearity re
strictions using a custom-developed Python script. In other words, the 3D 
coordinates of DSM were transformed into 2D pixel coordinates of an image 
using the camera’s interior and exterior orientation elements that were 
automatically calculated by PhotoScan. As a result, the corresponding image 
pixels were geolocated according to the projected 3D coordinates. The plot 
area was then extracted from the image acquired at each view angle using a 
2D convex hull of the projected pixels. However, because the spatial reso
lution of the DSM is coarser than the original UAV image and the projected 
pixels in each image were not spatially continuous, a bilinear interpolation 
process was applied to derive the geolocations of all pixels within the plot 
area of each image. Note that the multiangular images had different 2D 
pixel coordinates and zone shapes for the plot area depending on their view 
geometries, the number of pixels of the plot area in each image is different.  

(3) Calculation of pixel-wise view geometry 

Based on the trigonometric relationship between the position of the 

camera and ground point, view geometry information, including the 
view zenith angle (VZA: θ) and view azimuth angle (VAA: φ), was 
calculated with Eq. 2–3 for each pixel (Fig. 6, Pixel-wise VAA and Pixel- 
wise VZA): 

φp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

(
xc − xp

yc − yp

)

, xc − xp > 0, yc − yp > 0

π + arctan

(
xc − xp

yc − yp

)

, xc − xp < 0, yc − yp < 0

π + arctan

(
xc − xp

yc − yp

)

, xc − xp > 0, yc − yp < 0

2π + arctan

(
xc − xp

yc − yp

)

, xc − xp < 0, yc − yp > 0

(2)  

θp =
π
2
− arctan(

zc − zp
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xc − xp)
2
+ (yc − yp)

2
√ ) (3)  

where subscripts p and c refer to the original pixel associated with the 

Fig. 6. The workflow for deriving the background soil BRF and canopy BRF from UAV-based multiangular images. Abbreviations: structure-from-motion multi-view 
stereo (SfM-MVS), digital surface model (DSM), view azimuth angle (VAA), view zenith angle (VZA), near-infrared (NIR), principal plane (PP), and vertical 
plane (VP). 
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ground point and camera, respectively; x and y are X and Y coordinates 
of the UTM system respectively; z is the altitude.  

(4) Soil BRF extraction 

The plantation background consists of sunlit and shaded soil com
ponents under direct solar illumination. The extraction of soil BRF was 
implemented based on the sunlit soil component. We extracted the soil 
pixels based on canopy point cloud and then separately classified the soil 
pixels into the sunlit and shaded soil pixels using an image segmentation 
method. The canopy points were firstly identified from the 3D point 
cloud (Fig. 6, Crown point cloud) using a ground filter called a cloth- 
simulation filter (CSF) (Zhang et al., 2016) and a height segmentation. 
The canopy points were then back-projected to the original UAV images 
to mask the canopy and expose the soil (Fig. 6, Crown pixels). As the 3D 
canopy points sometimes do not cover all canopy pixels, an additional 
alpha-shaped polygon was computed to maximize the delineation of 
canopy pixels and to export soil pixels. Furthermore, a morphological 
image erosion method was applied to ensure that the selected soil pixels 
were positioned away from canopy pixels to alleviate multiple scattering 
effects (Fig. 6, Soil pixels). Next, the extracted soil pixels were classified 
into sunlit and shaded components through threshold-based segmenta
tions in the CIE L*a*b* color space where the threshold was automati
cally determined (Fig. 6, histograms in Sunlit soil pixel classification). 
The green fallen leaves and grass that might occasionally distribute 
across the ground surface in some cases, were excluded via an image 
segmentation in the CIE a* channel (Li et al., 2018; Yan et al., 2019). The 
CIE L* channel characterizing brightness feature was used to identify 
sunlit soil pixels. Finally, the soil BRF of a plot was computed as the 
average BRF of sunlit soil pixels in the plot (Fig. 6, Soil BRF). Given that 
the background soil was spatially homogeneous within such a small plot, 
the BRF of the selected soil patches can represent the background soil in 
a plot. Apart from the soil BRF, the canopy BRF of a sample plot was 
calculated by aggregating the BRF of all the pixels within the plot (Fig. 6, 
Canopy BRF). The plot-level VZA and VAA were set as the mean value 
and median value of the pixel angles within the plot, respectively. 

3.1.2. Soil BRF modeling by SOILSPECT model 
To obtain soil anisotropic characteristics over full hemispherical 

space, the SOILSPECT model (Jacquemoud et al., 1992), a parameter
ized radiative transfer model derived from the Hapke model (Hapke, 
1981), was used to produce the modeled soil BRF because it can model 
soil anisotropy with prominent accuracy for varying measurement 
conditions (R2 of larger than 0.99 and RMSE of less than 0.02) (Jac
quemoud et al., 1992). The six-parameter model includes a single scat
tering albedo (ω), roughness parameter (h) governing the width of the 
hotspot, and four phase function coefficients (b, c, b’, c’). The reflected 
radiance (L) in the direction (θr, 0) received by the sensor is composed of 
a single scattering term (Ls) and multiple scattering term (Lm) when the 
soil medium is illuminated by incoming radiant intensity (J) in direction 
(θi, ϕ) as Eq. (4) shows (Jacquemoud et al., 1992): 

L=Ls+Lm=
Jω
4π

cosθi

cosθi+cosθr
{[1+B(g)]P(g,g’)+H(cosθi)H(cosθr)− 1} (4)  

where H(x) = (1 + 2x)/(1 + 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ωx

√
) is an approximation of Chan

drasekhar’s H-function. 
The phase function P(g, g’) accounts for both the backward and for

ward scattering of smooth soils by Eq. (5) where g represents the phase 
angle (i.e., the zenith angle between the incident angle and reflected 
angle) and g’ refers to the angle between the reflected light direction and 
specular direction. In the original publication (Jacquemoud et al., 
1992), the phase function is approximated by a second-order Legendre 
polynomial. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(g, g’) = 1 + bcosg + c
3cos2g − 1

2
+ b’cosg’ + c’3cos2g’ − 1

2
cosg = cosθicosθr + sinθisinθrcosϕ

cosg’ = cosθicosθr − sinθisinθrcosϕ

(5) 

To explain the reflectance properties of rough soil, a simplified 
hotspot function B(g) is introduced considering phase angle g and 
roughness parameter h, as shown in Eq. (6): 

B(g) =
1

1 + (1/h)tan(g/2)
(6) 

In this study, the SOILSPECT model was adjusted with the UAV- 
derived soil BRF profile of each plot. Due to the prominent anisotropy 
in the PP, only values observed close to the PP were used for the retrieval 
of model parameters. The retrieved parameters of SOILSPECT served as 
the input of the LESS simulation for the uncertainty analysis in the 
following section. 

3.2. Uncertainty analysis of soil BRF based on LESS model 

The soil BRF extracted from UAV-based multiangular images was 
mixed with a soil-canopy multiple scattering signal due to the presence 
of multiple scattering between canopy foliage elements and sunlit soil in 
between-crown gaps. We quantified the magnitude of the multiple 
scattering effects through simulations by using the LESS model. The 
difference between the actual soil BRF and the soil BRF estimated from 
the simulated multiangular images of forest scenarios reflected the 
multiple scattering effects. 

Various virtually realistic forest scenarios characterizing different 
canopy cover levels (i.e., 0.17, 0.30, 0.44, 0.76, and 0.92) were created. 
A basic birch model (Betula pendula) originated from a 3-D realistic tree 
structure modeling software, OnyxTREE BROADLEAF 7.0 (Onyx 
Computing, Inc., Cambridge, USA), was used to establish the virtual 3D 
forest scenarios with a size of 50 m × 50 m. We replicated the basic tree 
model across each forest scenario by adjusting tree numbers and loca
tions (Li et al., 2020b) where the tree positions were generated based on 
a Poisson spatial distribution function. 

LESS, as a 3D radiative transfer model, can accurately and efficiently 
simulate spectral reflectance and images of vegetation scenes from the 
visible to thermal infrared domains (Qi et al., 2017, 2019). The BRF 
simulated by LESS is consistent with those of other classic models (e.g., 
the DART model) applying the RAMI exercise under different forest 
scenarios. The backward path tracing of LESS traces only rays that enter 
the sensor, making it effective in simulating images. To operate LESS for 
image simulation, one needs to import a 3D scene file (e.g., forest sce
narios), and set the illumination and observation geometry, the optical 
properties of vegetation components (spectral reflectance or PROSPECT 
model parameters (Jacquemoud and Baret, 1990)), and the optical 
properties of background soil (spectral reflectance or SOILSPECT model 
parameters). In our simulation, the SOILSPECT model parameters were 
collected from the soil of Plot 2 (Table 1), given that its relatively higher 
reflectance anisotropy could strengthen the interaction between canopy 
elements and soil. As Table 3 shows, multiangular images at 850 nm 
with VZA of ranging from − 70◦ to 70◦ with an angle interval of 10◦ in 
the PP were simulated through the LESS model at five canopy cover 
levels and four SZAs (i.e., 0◦, 20◦, 40◦, and 60◦). 

The extraction of the soil BRF from the simulated multiangular im
ages is much easier than that from field-acquired UAV images because 
the locations of sunlit soil pixels in the simulated image were exactly 
known from the LESS output. We derived the estimated soil BRF from 
those sunlit soil pixels positioned away from crown pixels in each 
directional image using the image morphological erosion technique, 
minimizing multiple scattering effects (Fig. 7). 
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3.3. Evaluation of soil anisotropy effect on canopy BRF based on LESS 
model 

To explicitly understand and quantify discrepancies of the canopy 
BRF under isotropic background soil and anisotropic soil conditions, the 
canopy BRF profiles of various virtual forest scenes under different soil 
moisture content, canopy cover, and SZAs were simulated using Lam
bertian soil and anisotropic soil, respectively (Table 4). The LESS model 
was applied to simulate canopy BRF using its forward mode at each user- 
specified view angle by modeling single and multiple scattering within 
and between crowns and other components of the radiation field. 

In the configuration of simulations, we used the clay soils with three 
soil moisture content levels (dry soil, slightly moist, and very moist) 
collected by Jacquemoud et al. (1992) to enrich the simulation, because 
the soil of the experimental plots in this study was dry (Table 1). The 
selection of clay soil is reasonable since it is relatively common in 

plantation regions. For the anisotropic soil, we obtained the SOILSPECT 
model parameters of the clay soil (Jacquemoud et al., 1992). For the 
Lambertian soil, the soil reflectance was set as the SOILSPECT-predicted 
nadir BRF of the anisotropic soil. This treatment is acceptable because 
soil reflectance, as the input of the radiative transfer model, is generally 
measured in the nadir direction (Fang and Liang, 2003). Next, various 
3D forest scenarios were created following the procedure described in 
Section 3.2. The canopy BRFs were simulated with the VZAs from − 70◦

to 70◦ with an interval of 2◦ in the PP. Table 4 details the basic struc
tures, the optical properties of scene components, and illumination 
geometry. 

4. Results 

4.1. Comparison of soil BRF obtained from UAV and ground observations 

As Fig. 8 shows, the UAV-measured soil BRF profiles show good 
agreement with those measured using a ground multiangular observa
tion system with an RMSE of less than 0.02 in the PP for all plots. Note 
that the ground-based BRF values were linearly interpolated to calculate 
the accuracy metrics due to the inconsistent numbers of UAV- and 
ground-based observations. However, the maximum BRF value associ
ated with the hotspot direction shows slight discrepancies between UAV 
and ground measurements. Our rough calculation of the view angle of 
ground observations might explain this problem. The ground-measured 
BRF profiles showed small jump points due to slight heterogeneity 
within the observation region. Comparatively, the UAV-measured BRF 
distribution was more consistent along with the PP. Fig. 8 also shows the 
fitted soil BRF profiles based on UAV measurements using the SOIL
SPECT model for all plots. The fitted profiles are in line with the 
measured profiles with R2 values of larger than 0.92, allowing the ac
curate characterization of the soil anisotropy by a soil BRDF model, 
hence providing the input of LESS simulation for the uncertainty anal
ysis in Section 3.3. 

The soil BRF at a larger SZA over the plantation background shows a 
more pronounced bell shape (except Fig. 8d) and lower BRF values in the 
PP. The BRF values quickly decrease when they shift from the hot-spot 
direction to other directions. The slow decrease in the BRF at VZAs of 
larger than 30◦ might have been caused by a few grasses growing on the 
ground surface (Fig. 8d). As soil moisture content is different for the 
three plots, the soil BRF profiles characterize different exact values. 
Under a similar SZA, dryer soil usually shows pronounced reflectance 

Table 3 
Inputs of the LESS model for the simulations of multiangular images of virtual 
forest scenarios under different canopy cover levels and solar zenith angles, in 
order to analyze the uncertainties of the soil BRF estimate from the multiangular 
image.  

Parameters Value Description 

Structure 
Tree location Poisson distribution 3 m minimum between trees 
Tree model 3D birch model OnyxTREE BROADLEAF 7.0 
Canopy cover 0.17; 0.30; 0.44; 0.76; 0.92   

Optical property 
Wavelength 850 nm Field spectral measurements 
Leaf reflectance 0.45  
Branch reflectance 0.27  
Soil optical 

property 
SOILSPECT parameters of 
Plot 2 

Anisotropic soil  

Illumination 
Solar zenith angle 0◦; 20◦; 40◦; 60◦ From nadir to large off-nadir 

angle 
Solar azimuth 

angle 
180◦

Fig. 7. Classification map of the sunlit and shaded components in a simulated 
directional image of a forest scenario (canopy cover of 0.30) with a solar zenith 
angle (SZA) of 20◦ and view zenith angle (VZA) of 40◦. Pixels of the sunlit soil 
(orange areas) were selected to calculate the soil BRF. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 4 
Inputs of the LESS model for the simulations of canopy BRF under various soil 
moisture levels, canopy cover levels, and solar zenith angles, in order to assess 
the soil anisotropy effect on the canopy BRF.  

Parameters Value Description 

Structure 
Tree location Poisson distribution 3 m minimum between trees 
Tree model 3D birch model OnyxTREE BROADLEAF 7.0 
Canopy cover 0.17; 0.30; 0.44; 0.76; 0.92   

Optical property 
Wavelength 851 nm From reflectance library 
Leaf reflectance 0.39  
Branch 

reflectance 
0.26  

Soil moisture 
level 

Dry; slightly moist; very 
moist 

Jacquemoud et al., (1992) 

Anisotropic soil SOILSPECT model 
predictions  

Lambertian soil SOILSPECT-predicted nadir 
BRF   

Illumination 
SZA 0◦; 20◦; 40◦; 60◦ From nadir to large off-nadir 

angle 
SAA 180◦
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anisotropy (Tian and Philpot, 2018). 
The UAV-based multiangular images also enable the extraction of can

opy BRF. As Fig. 9 illustrates, the canopy BRF profiles of all observations 
taken in the PP in the NIR band are asymmetrical and exhibit a prominent 
bowl shape, i.e., pronounced anisotropy characteristics. It is noticed that the 

canopy BRF values at VZAs of larger than 45◦ on the forward scattering side 
were removed for Plot 1 (Fig. 9b), mainly because the radiant flux of the 
sample plot was blocked by the neighboring tall trees outside the plot. High 
and low reflectance are distributed in the backscattering (negative VZA) and 
forward scattering (positive VZA) directions, respectively. The darkest 

Fig. 8. Soil BRF profiles of Plot 1 (a, b), Plot 2 (c, d), and Plot 3 (e, f) at different sun geometries in the principal plane (PP) at 850 nm. The soil BRF profiles are 
measured by a ground-based observation system and a UAV. The RMSE values were calculated by using the UAV-measured values and the interpolated ground- 
measured values. The R2 values were calculated using the SOILSPECT-fitted and UAV-measured soil BRF. 
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region appears over a small VZA on the forward scattering side. The canopy 
BRF reaches a maximum in the hotspot position and shows no decrease from 
the nadir direction to the hotspot direction. The canopy BRF at a larger SZA 
shows a more pronounced bowl shape and increases in BRF values in the PP 
(Fig. 9a, b; Fig. 9c, d; Fig. 8e, f), especially for the back-scattering direction, 
since the fraction of sunlit crowns and multiple scattering increase. Under 
similar SZAs (Fig. 9a, c, and e; Fig. 9b, d, and f), the magnitude of the canopy 
BRF shows differences among three different 3D structures (i.e., three or
chard sample plots) supported by the extensive description of canopy 
structures, tree species composition and density and optical properties of 
leaves and soil. This implies that canopy anisotropic characteristics contain 

canopy biophysical and biochemical information. The canopy BRF in the 
hotspot region were apparently not as sharp as the predictions by some 
canopy BRDF models (Jiao et al., 2016). This can be explained by the ag
gregation process of the radiant flux over a solid angle of approximately 0.1 
sr (FOV of approximately 20◦), leading to the concealing of true BRDF 
features. 

4.2. Quantification of UAV-measured soil BRF uncertainty 

Fig. 10 compares the soil BRF extracted from simulated images and 
those of bare soil (i.e., CC = 0) for a range of VZAs, SZAs, and CC levels. 

Fig. 9. Canopy BRF of Plot 1 (a, b), Plot 2 (c, d), and Plot 3 (e, f) at different sun geometries in the principal plane (PP) at 850 nm. The view zenith angle in the 
forward scattering direction of the PP is positive, whereas that in the backward scattering direction of the PP is negative. 
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Although the LESS simulations for the multiple scattering effect analysis 
were conducted for all CC levels from 0.17 to 0.92, there is only a small 
obviously visible sunlit soil component in the simulated directional images 
for CC of 0.76 and 0.92; thus, no soil BRF values were derived for these two 
CC levels. As Fig. 10 explains, the difference between the soil BRF of bare 
soil and that of extracted soil reflects the contribution of multiple scattering 
effects between foliage elements and background soil. A larger difference 
indicates a greater contribution to the extracted soil BRF. With a fixed SZA, 
the multiple scattering effects increase with increasing CC. With fixed CC, 
the rise of the SZA drives an increase in the multiple scattering effects. 
Nevertheless, only a small difference (approximately 0.03) between the 
extracted soil BRF and the true values was found at 850 nm. Specifically, the 
maximum contribution of multiple scattering to the soil BRF on the back
ward scattering side is less than 5% for a VZA of 0◦, an SZA of 60◦, and a CC 
of 0.44 in the PP, which is acceptable given the 5% quality objective for BRF 
observation (Widlowski et al., 2014). The results suggest that the soil BRF 
extracted from UAV-based multiangular images is close to the true soil BRF 
in the NIR band. 

4.3. Difference of simulated canopy BRF under anisotropic soil and 
Lambertian soil 

Simulations of canopy BRF with anisotropic soil are here referred to, 
for the sake of simplicity, as SAS and those with Lambertian soil are 

referred to as SLS. To illustrate noticeable differences between the SAS 
and SLS, only simulations conducted on dry background soil are shown 
among different soil moisture content levels in this section (Fig. 11) 
whereas those under slight moist and very moist soil conditions are 
provided in the supplementary file (Figs. 12, 13). The simulated canopy 
BRF profiles with anisotropic soil and Lambertian soil backgrounds 
under a range of canopy cover levels and SZAs at 850 nm are compared 
in Fig. 11. Overall, there is a large deviation of canopy BRF values in 
magnitude and shape between the SAS and SLS when low canopy cover 
and large SZA values occur, verifying that the reflectance from back
ground soil distorts the signal of the whole canopy. The canopy BRF with 
SLS shows weaker anisotropy than that of the SAS over the VZA range. 

For a given canopy cover (see columns in Fig. 11), the soil aniso
tropic characteristics become more pronounced in the canopy BRF with 
an increase in the SZA, especially in back-scattering directions. A larger 
SZA generally creates an increased bias for the SLS BRF. More precisely, 
the canopy BRF of the SLS is generally larger than that of the SAS under 
the smaller SZA, whereas the relationship becomes inverse for a larger 
SZA. The difference between the SLS BRF and SAS BRF usually increases 
when the VZA increases, especially for large off-nadir angles. Outside 
the hotspot region, the difference decreases with the SZA due to the 
decreasing contribution of the sunlit soil fraction. In addition, the dif
ference varies with the SZA at a given VZA, e.g., the difference in nadir 
directions is not constant for the four SZAs. This is the case because the 

Fig. 10. Comparisons between the soil BRF extracted from simulated images of multiple virtual forest scenarios and that of bare soil for the bare soil scene across a 
range of view zenith angles (VZAs), solar zenith angles (SZAs), and canopy cover (CC) levels. 
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Lambertian soil reflectance was set as the nadir reflectance of aniso
tropic soil. 

For a given SZA (see rows in Fig. 11), the background soil gradually 
becomes invisible as the canopy cover increases. The difference in the 
canopy BRF of the SAS and SLS decreases when the canopy cover in
creases, implying that the BRF is clearly driven by variation in canopy 
cover. The BRF shape is related to the direction canopy fraction as a 
function of the VZA and canopy cover. The difference varies with the 
VZA because directional canopy cover gradually increases when VZA 
increases. The lesser canopy cover results in a stronger soil effect on 
canopy anisotropic characteristics since the soil component occupies a 
larger fraction in the FOV. For low canopy cover levels (e.g., canopy 
cover of less than 0.5), the absolute error can reach up to 0.3 in the hot- 
spot direction (Fig. 11 rows 3, 4 and columns 2, 3 of curve plots). This 
result confirms that the influence of soil anisotropy depends on CC and 
that less canopy cover will strengthen these effects. For high canopy 
cover levels (e.g., canopy cover of greater than 0.5), the deviation of the 
canopy BRF for the SLS approaches zero. The simulations overall 
demonstrate that the use of soil anisotropy can reduce uncertainties of 
open radiative transfer simulations. 

5. Discussion 

5.1. Feasibility of soil BRF extraction from UAV data 

The proposed photogrammetry-based image processing algorithm 
for the derivation of soil BRF was evaluated under multiple illumination 

and plantation conditions. As the NIR band is particularly important in 
biophysical variable retrievals (Verrelst et al., 2019), our analysis and 
results are mainly associated with the NIR band (centered at the 850 
nm). The observed consistency between the ground- and UAV-measured 
soil BRF highlights the potential for UAV multiangular images to accu
rately characterize forest background optical properties (Fig. 8). Our 
uncertainty analysis of multiple scattering effects demonstrates the 
effectiveness of UAV multiangular observations of forest background. 
The largest bias value of 0.03 recorded at 850 nm confirms that multiple 
scattering between crowns and soil can be neglected (Fig. 10). For the 
visible domain, multiple scattering is less pronounced than that in the 
NIR domain (Shabanov et al., 2000), which implies an even better 
characterization of soil anisotropy in the visible domain. 

The acquisition of UAV-based multiangular images technically pro
vides the possibility for the characterization of reflectance anisotropy. 
The goniometric pattern of multiangular observations makes the pixel 
resolutions of the observed plot almost the same for all the directions, 
offering the geometrical features of image matching in a certain scale 
which strengthens the capacity of image matching and hence improves 
the quality of 3D point cloud and the georeferencing accuracy. This al
lows the calculation of pixelwise view geometry, overcoming the limi
tations of sensor pointing accuracy. The aerial campaign was conducted 
on a calm and cloudless day. In such environmental conditions, the 
canopy elements are generally motionless, i.e., quite small movements 
relative to the demand of image matching, further enabling accurate 
image matching among overlapped images. Under clear sky conditions, 
given that most of the incident flux comes from the sun direction, the 
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Fig. 11. Comparison of the simulated canopy BRF with anisotropic soil and that with Lambertian soil under different canopy cover (CC) levels and solar zenith angles 
(SZAs) at 850 nm in dry background soil scenarios. The top row displays five cases of CC levels. The rightmost column exhibits anisotropic characteristics of bare soil 
at four SZAs. 
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BRF in the visible and near-infrared domains is considered to be well 
approximated by the hemispherical-directional reflectance factor 
(HDRF) (Kuusk et al., 2014) although field measurements generally 
obtain HDRF (both solar directional irradiance and sky diffuse irradi
ance are present) rather than BRF (Schaepman-Strub et al., 2006). The 
multiangular measurements in this study are therefore considered as 
BRF due to the cloud-free conditions. In addition, our 10-minute-long 
flight minimizes the effect of the variation of sun geometry that the 
sun moved less than 3◦ both in zenith and azimuth. With such a small 
sun movement, the variation of sun geometry might have underestimate 
BRF at hot-spot direction but the influence on BRF at the other view 
angles is marginal (Koukal et al., 2014; Roosjen et al., 2016). Moreover, 
the pixel aggregation at hotspot direction within a FOV can largely 
alleviate the contribution of sun geometry variation. 

The proposed processing technique ensures the accurate character
ization of background soil anisotropy. In the procedure, the plantation 
plot pixels as the region of interest (ROI) were automatically extracted 
from each directional image, yielding the identical extracted area but 
different FOVs among multiangular images. The fixed-ROI observation 
pattern minimizes the interference from the adjacent plants outside of 
the sample plot, i.e., weakening the scale problem. As Section 3.1.2 
described, the soil BRF is derived based on the sunlit soil pixels which 
can be extracted as long as they are visible in the image. The extracted 
soil BRF is insensitive to the number of soil pixels and mostly relies on 
the soil inherent optical properties. 

The soil BRF results achieved in this study are reproducible and 
consistent, but potential biases remain. As the soil reflectance was 
extracted from large sun-flecks or clear-cuts where tree crowns were 
almost missing, the measured soil BRF might have errors. These 
preferred areas are usually under higher levels of sun illumination 
during the day and thus have drier surfaces, which might differ from the 
soil areas beneath crowns and in shaded areas. Nevertheless, this bias is 
less important because sunlit soil dominates the contribution of the re
flected signal. Additionally, while soil heterogeneity can introduce bias, 
it was found to be very slight in our study. 

5.2. Influence of soil anisotropy on canopy BRDF simulation 

Our investigation based on simulations provides a quantification of 
soil anisotropy influence on canopy BRF based on canopy structure, sun 
geometry, and soil moisture conditions (Fig. 11). When canopy cover 
exceeds 0.5, the influence of soil anisotropy is quite small under any SZA 
and soil moisture content conditions. Our results are consistent with 
these previously reported studies that the soil contribution is small and 
negligible in dense canopies (Choubey and Choubey 1999; Rautiainen 
2005). In the case of canopy cover of less than 0.5, the simulation results 
show that the influence of soil anisotropy is sensitive to the SZA. A 
smaller SZA generally induces a greater influence of soil on canopy 
reflectance for most VZAs (the relative error can exceed 100% when soil 
is dry, SZA = 0◦, canopy cover is 0.30 and VZA = 45◦ for Lambertian soil 
assumption). This can be explained by the increasing fraction of sunlit 
soil and the increasing path length with an increasing SZA (Myneni and 
Ross, 1991) and demonstrates the importance of considering the SZA for 
BRF-related applications (Chen et al., 2005). We also explored three soil 
moisture conditions of rough clay soil. Soil anisotropy is weaker when 
soil is at a higher soil moisture content level, leading to a lower influence 
on canopy anisotropy (the relative error reduces to about 50% when soil 
is very moist, SZA = 0◦, canopy cover is 0.30 and VZA = 45◦ for Lam
bertian soil assumption). Our simulation results reveal that the Lam
bertian soil assumption is not effective, especially for canopy cover 
values of less than 0.5. The anisotropic characteristics of a discrete 
vegetation canopy are considerably affected by soil anisotropy. The in
fluence of soil anisotropy is pronounced in the NIR band due to the 
stronger scattering effect. This indicates that soil anisotropy must be 
considered in the radiative transfer modeling of vegetation canopies, 
especially for the NIR band. Overall, our comparison of the LESS- 

simulated canopy BRF with the assumptions of Lambertian and aniso
tropic background soil verifies the need for accurate soil anisotropy 
information for open-canopy radiative modelling. 

5.3. Spatial variation of forest background 

Bare soil backgrounds are common for artificial vegetation scenes, 
such as the orchard in this study and the plantation forests in some 
semiarid regions. However, a few types of natural forests are also with 
bare soil, e.g., the Populus Euphratica forests of arid ecosystem grow in 
bare sandy soil. As a significant reflectance anisotropy has been 
observed for the bare clay soil in our orchard plots, the sandy soil 
backgrounds are expected to show higher anisotropic characteristics 
than clay soil due to their difference in soil texture, surface roughness, 
organic matter content, moisture and mineralogical composition 
(Muller and Décamps, 2001). In addition to these plantations and for
ests, bare soil always appears in agricultural crops but could have a 
complicated texture, e.g., the plowed soil (Badura and Bachmann, 
2019). In the emerging stage of crops that also characterized open- 
canopy, the soil anisotropy is expected to largely affect canopy BRF, 
analogous to the open-canopy forest scenes. We suggest applying the 
proposed method for the above-mentioned open-canopy scenes to 
extract soil BRF and then analyze the soil anisotropic characteristics. 

However, forest background generally refers to all materials (not just 
bare soil) below the forest canopy, which might include senescent 
leaves, grass, shrubs, lichen, moss and their combinations, and even 
snow in the winter season in temperate and boreal forest regions (Pisek 
and Chen, 2009). In many open forest ecosystems, the forest background 
is occupied by understory vegetation, such as miniature forests, and has 
a more compact yet complex structure and more species variation than 
the overstory canopy (Li et al., 2020a). Correspondingly, the spectral 
and directional reflectance properties of understory vegetation may vary 
considerably (Peltoniemi et al., 2005). As the increased roughness often 
results in stronger anisotropy, the anisotropic characteristics of the un
derstory vegetation might be more pronounced than those of the soil. 
The former might have a greater influence on canopy directional 
reflectance. Therefore, the need for anisotropy characterization of un
derstory vegetation might be even stronger, driving the further appli
cations of the proposed method in this study. 

5.4. Potential value of UAV-measured soil BRF 

This study demonstrated that recent technological advancements in 
UAVs, lightweight imaging sensors, and multiangular image processing 
provide new operational systems for the quantitative remote sensing of 
plantations. This study proposes a feasible means to extract soil BRF profiles 
from UAV multiangular images, offering strong insight into the anisotropic 
characteristics of the background of open-canopy areas. In terms of facili
tating measurement, with this simple but effective technique, we need not 
use a field goniometer to measure the forest background BRDF at the plot 
level due to its labor- and time-consuming nature. Extensive spectral BRDF 
databases of forest backgrounds (e.g., understory vegetation, soil, and snow) 
can be established, necessitating further investigations on forest canopy 
simulation and the retrieval of canopy variables in consideration of soil 
anisotropy. UAV-measured soil anisotropic characteristics can also be used 
to produce angular reflectance spectra of forest canopies when simulating a 
forest landscape with a particular soil type or similar representation (Kuusk 
et al., 2004), facilitating radiative transfer modeling and validation (Rau
tiainen and Heiskanen, 2013). Furthermore, with advances in UAV-related 
technologies, large-area measurements are expected to be able to quantify 
both the angular and spatial variability of forest backgrounds, which might 
be relatively high at the scale of satellite pixels (Rautiainen, 2005). The 
background anisotropy provided by UAVs, as the input of the retrieval 
model, could improve the accuracy of the estimation of canopy parameters 
from remote sensing data. 
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6. Conclusion 

This study offers new insight into the characterization of background 
soil anisotropy with UAV-based multiangular images in open-canopy 
plots. We developed a photogrammetry-based image processing tech
nique for efficiently extracting the reflectance anisotropy of background 
soil from multiangular images. UAV-measured soil BRF profiles were 
found to be in agreement with the ground-based anisotropy measure
ments (RMSE of less than 0.012). The uncertainty of the measured soil 
BRF due to multiple scattering was evaluated, and it was confirmed that 
the effect is negligible even for the NIR band (i.e., 850 nm). A series of 
3D radiative transfer simulations based on Lambertian and anisotropic 
soil (modeled by the SOILSPECT model) was conducted to explore the 
need for accurate background soil anisotropy. As a result, the assump
tion of the Lambertian reflectance of forest backgrounds is insufficient to 
accurately model the canopy BRF (bias can reach up to 0.3). The 
simulation results also verify that soil anisotropic characteristics cannot 
be neglected in open forests with canopy cover levels of less than 
approximately 0.5. The technique proposed in this work can be valuable 
for validating and advancing soil-canopy radiative transfer models and 
for the retrieval of vegetation parameters. 
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Widlowski, J.-L., Côté, J.-F., Béland, M., 2014. Abstract tree crowns in 3D radiative 
transfer models: Impact on simulated open-canopy reflectances. Remote Sens. 
Environ. 142, 155–175. https://doi.org/10.1016/J.RSE.2013.11.016. 

Yan, G., Li, L., Coy, A., Mu, X., Chen, S., Xie, D., 2019. ISPRS Journal of Photogrammetry 
and Remote Sensing Improving the estimation of fractional vegetation cover from 
UAV RGB imagery by colour unmixing. ISPRS J. Photogramm. Remote Sens. 158, 
23–34. https://doi.org/10.1016/j.isprsjprs.2019.09.017. 

Yan, G., Ren, H., Hu, R., Yan, K., Zhang, W., 2012. A portable Multi-Angle Observation 
System. In: International Geoscience and Remote Sensing Symposium (IGARSS). pp. 
6916–6919. https://doi.org/10.1109/IGARSS.2012.6352572. 

Yan, K., Park, T., Yan, G., Chen, C., Yang, B., Liu, Z., Nemani, R.R., Knyazikhin, Y., 
Myneni, R.B., 2016. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: 
Consistency and improvements. Remote Sens. 8, 1–16. https://doi.org/10.3390/ 
rs8050359. 

Zarco-Tejada, P.J., Miller, J.R., Noland, T.L., Mohammed, G.H., Sampson, P.H., 2001. 
Scaling-up and model inversion methods with narrowband optical indices for 
chlorophyll content estimation in closed forest canopies with hyperspectral data. 
IEEE Trans. Geosci. Remote Sens. 39, 1491–1507. https://doi.org/10.1109/ 
36.934080. 

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, G., Zhang, W., Qi, J., 
Wan, P., Wang, H., Xie, D., Wang, X., Yan, G., 2016. An easy-to-use airborne LiDAR 
data filtering method based on cloth simulation. Remote Sens. 8, 501. https://doi. 
org/10.3390/rs8060501. 

Zhang, X., Qiu, F., Zhan, C., Zhang, Q., Li, Z., Wu, Y., Huang, Y., Chen, X., 2020. 
Acquisitions and applications of forest canopy hyperspectral imageries at hotspot 
and multiview angle using unmanned aerial vehicle platform. J. Appl. Remote Sens. 
14, 1. https://doi.org/10.1117/1.jrs.14.022212. 

L. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1029/98GL00383
https://doi.org/10.1016/J.RSE.2009.07.003
https://doi.org/10.1109/TGRS.2009.2024756
https://doi.org/10.1109/JSTARS.2017.2714423
https://doi.org/10.1016/J.RSE.2018.11.036
https://doi.org/10.1016/J.RSE.2005.09.004
https://doi.org/10.1016/J.RSE.2005.09.004
https://doi.org/10.1109/LGRS.2013.2247560
https://doi.org/10.3390/rs8110909
https://doi.org/10.3390/rs9050417
https://doi.org/10.3390/rs9050417
https://doi.org/10.1016/j.jag.2017.10.012
https://doi.org/10.1016/j.jag.2017.10.012
https://doi.org/10.1109/36.752216
https://doi.org/10.1109/36.752216
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/j.rse.2019.04.007
https://doi.org/10.1007/s41064-020-00120-1
https://doi.org/10.1016/S0034-4257(00)00128-0
https://doi.org/10.1016/j.isprsjprs.2012.12.006
https://doi.org/10.1016/j.isprsjprs.2012.12.006
https://doi.org/10.1117/12.2324550
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/J.RSE.2006.12.013
https://doi.org/10.1016/J.RSE.2006.12.013
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1016/S0034-4257(99)00045-0
https://doi.org/10.1016/J.RSE.2013.11.016
https://doi.org/10.1016/j.isprsjprs.2019.09.017
https://doi.org/10.1109/IGARSS.2012.6352572
https://doi.org/10.3390/rs8050359
https://doi.org/10.3390/rs8050359
https://doi.org/10.1109/36.934080
https://doi.org/10.1109/36.934080
https://doi.org/10.3390/rs8060501
https://doi.org/10.3390/rs8060501
https://doi.org/10.1117/1.jrs.14.022212

	Characterizing reflectance anisotropy of background soil in open-canopy plantations using UAV-based multiangular images
	1 Introduction
	2 Materials
	2.1 Experimental site
	2.2 Acquisition of UAV data
	2.3 Acquisition of ground data
	2.4 Radiometric calibration

	3 Methods
	3.1 Background soil BRF characterization
	3.1.1 Soil BRF extraction from UAV multiangular images
	3.1.2 Soil BRF modeling by SOILSPECT model

	3.2 Uncertainty analysis of soil BRF based on LESS model
	3.3 Evaluation of soil anisotropy effect on canopy BRF based on LESS model

	4 Results
	4.1 Comparison of soil BRF obtained from UAV and ground observations
	4.2 Quantification of UAV-measured soil BRF uncertainty
	4.3 Difference of simulated canopy BRF under anisotropic soil and Lambertian soil

	5 Discussion
	5.1 Feasibility of soil BRF extraction from UAV data
	5.2 Influence of soil anisotropy on canopy BRDF simulation
	5.3 Spatial variation of forest background
	5.4 Potential value of UAV-measured soil BRF

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary material
	References


