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 
Abstract—Bidirectional Reflectance Distribution Function 

(BRDF) models are used to correct surface bidirectional effects 
and estimate land surface albedo. Many operational 
BRDF/Albedo algorithms adopt a Roujean Linear Kernel-driven 
BRDF (RLKB) model because of its simple form and good 
performance in fitting multi-directional surface reflectance values. 
However, this model does not explicitly consider topographic 
effects, resulting in errors when applied over rugged terrain. To 
address this issue, we proposed a hybrid algorithm suitable for 
both flat and rugged terrain, called Topographical Kernel-Driven 
(Topo-KD). First, we constructed a Linear Kernel-driven BRDF 
model considering Terrain (LKB_T) which describes the 
topographic effects with a Mountain Radiative Transfer (MRT) 
model. Then, the Topo-KD algorithm adaptively selects the most 
suitable model (RLKB or LKB_T) according to terrain conditions 
and fitting residuals. The performances of Topo-KD and RLKB 
using the RossThick-LiSparseReciprocal (RTLSR) kernel are 
compared using simulated datasets and MODIS observations. The 
results show that the BRDF of the pixel is affected by topography. 
But the RTLSR model does not specifically account for it, resulting 
in larger biases over rugged terrain than the Topo-KD algorithm 
in both the red and Near Infrared (NIR) bands. And the 
experiment using MODIS datasets demonstrates that the Topo-
KD algorithm reduces fitting residuals in the red and NIR bands 
by 21.5% and 27.4% compared with the RTLSR model. These 
results indicate that the Topo-KD algorithm can be a better choice 
for retrieving land surface parameters and describing the 
radiative transfer process in mountainous areas. 

Index Terms—BRDF/Albedo, DEM, Kernel-driven model, 
Radiative transfer, Reflectance anisotropy, Topographic effects 
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I. INTRODUCTION 

IDIRECTONAL Reflectance Distribution Functions 
(BRDFs) are widely used to describe the reflective 

properties of a non-Lambertian surface. Several land-surface 
BRDF models have been developed for four main applications: 
1) to generate measures of surface albedo; 2) to correct 
bidirectional effects, which can add significant noise-like 
fluctuations to time series [1-3]; 3) to serve as lower boundary 
conditions for atmospheric Radiative Transfer (RT) models [4, 
5]; and 4) to estimate Leaf Area Index (LAI) and other 
important parameters for global ecological and environmental 
monitoring [6-8]. 

Rugged terrain affects the pixel’s BRDF, but current 
models/algorithms, which have been designed for uniform 
terrain conditions, do not explicitly account for topographic 
effects when estimating land surface albedo and retrieving 
biophysical-structural properties [9-11]. However, many 
studies have shown that remote sensing signals are affected by 
rugged terrain [12, 13]. Topography affects the spatial 
distribution of downward radiation in coarse pixels and changes 
the local sun-canopy-sensor geometry of each subpixel [14, 15]. 
Topographic effects in coarse-resolution data are often 
overlooked because they are difficult to estimate and the overall 
slope is usually small. However, the BRDF of a coarse remote 
sensing pixel over rugged terrain shows differences from that 
over flat terrain [16, 17]. Therefore, to more accurately model 
the BRDF over rugged terrain, it is necessary to develop a 
model that can capture the topographic effects. 

Since the early 1980s, many physical and empirical methods 
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have been proposed for dealing with topographic effects. The 
Geometric Optical Mutual Shadowing with Topography 
(GOMST) model has been used to model the BRDF of a slope 
by using the sun-terrain-sensor geometric correction from the 
horizontal plane to the local terrain. [18, 19]. Yin et al. [20] 
developed the Path Length Correction (PLC)-based model for 
simulating canopy reflectance over rugged terrain. Although 
they have been proven reliable for simulating the bidirectional 
reflectance over rugged terrain, these methods regard the pixel 
as a “single slope” without subpixel effects. This may be 
acceptable for high-resolution data, such as Landsat Thematic 
Mapper (TM) imagery (30 m). But for coarse pixels, such as a 
Moderate-resolution Imaging Spectroradiometer (MODIS) 
pixel (500 m), their directional reflectance can be affected not 
only by the overall slope and aspect of the rugged terrain, but 
also by the spatial distribution of these subpixel slopes [21]. 
Thus, these methods, which do not consider the influence of 
subpixels, may not perform well at larger resolutions. 

To address this issue, and more accurately describe the RT 
process among slopes, Mountain Radiative Transfer (MRT) 
models have been developed to simulate the coarse pixel’s 
BRDF by considering terrain blocking-effects using a DEM and 
sun-sensor geometry information [22, 23]. Based on the MRT 
theory, Wen et al. [10] developed a physically-based Equivalent 
Slope Model (ESM) to characterize the clear-sky reflectance 
anisotropy of a coarse pixel over rugged terrain, based on the 
assumption that there is an equivalent virtual smooth slope 
whose incoming and outgoing radiation will be the same as that 
of the coarse pixel. Hao et al. [24] put forward a diffuse-ESM 
(dESM) that takes into account terrain altered diffuse skylight, 
and Hao et al. [25] further developed an improved Topography-
Coupled Kernel-Driven (TCKD) reflectance model with a 
correction of diffuse skylight effects, based on the dESM. 
However, both the dESM and TCKD model neglect the 
remainder of the Taylor expansion in the construction, which 
can cause approximation errors. These models also neglect any 
additional multiple-scattering effects caused by adjacent 
terrain-reflected radiance that may account for a large portion 
of the downward radiance in extremely rugged terrain [15].  

The Roujean Linear Kernel-driven BRDF (RLKB) model, as 
a semi-empirical model, can easily utilize the reflectance of 
directional satellite observations and use a simple semi-
empirical linear formula to estimate the surface BRDF. Such a 
semiempirical linear kernel-driven BRDF model, using the 
RossThick-LiSparseReciprocal (RTLSR) kernel has been 
adopted by the operational MODIS BRDF/Albedo algorithm 
[18, 26-28], which relies on the weighted sum of an isotropic 
parameter and two kernels of sun-sensor geometry to determine 
the bidirectional reflectance [29-31]. The linear nature of these 
models has the significant advantage that the coefficient of each 
kernel can easily be used either to calculate the reflectance as a 
function of sun-sensor geometry or to estimate albedos in 
conjunction with a Look-Up Table (LUT) of pre-computed 
kernel integrals. Although these BRDF models have been 
proven to fit most land surfaces, they do not explicitly consider 
topography and may lead to errors in mountainous areas [9]. 

Therefore, there is interest in developing a BRDF algorithm 

that can be applied to both flat and rugged terrain used as a new 
operational algorithm. In this study, we proposed a Linear 
Kernel-driven BRDF model considering Terrain (LKB_T) by 
coupling the MRT model with the RLKB model using the 
RTLSR kernel. Compared with the recent TCKD model [25], 
the LKB_T model has an advantage in that it considers terrain 
induced multiple-scattering effects and has a rigorous 
mathematical foundation without a Taylor expansion 
approximation. Additionally, LKB_T has the ability to model 
mixed pixels with high-resolution observations as auxiliary data. 
To obtain a wider range of applications, in this study, we 
combined the RLKB and the LKB_T models into a hybrid 
algorithm, Topographical Kernel-Driven (Topo-KD), which 
not only serves to more appropriately model the retrieved 
accuracy over rugged terrain but also retains the advantages of 
the RLKB model. The Topo-KD algorithm was evaluated and 
validated using simulated data and MODIS observations 
compared with the RLKB model by using RTLSR kernels, and 
its advantages, the limitations of this study were discussed. 

II. DATASETS AND METHODOLOGY  

A. Datasets and Study Area 

 

MODIS is a key instrument onboard the Terra and Aqua 
satellites. Terra MODIS and Aqua MODIS observe the entire 
Earth's surface every 1 to 2 days, acquiring data in 36 spectral 
bands. Based on an optical mechanical scanning technology, 
the Field of View (FOV) of MODIS can change from -55° to 
+55°, allowing MODIS to provide multi-angular reflectance 
from several days of observations. The MOD/MYD09GA 
products, derived from MODIS observations, provide daily 
surface BRF at a gridded 500 m spatial resolution and for seven 
spectral bands [32]. Only the red band and the Near Infrared 
(NIR) band (centered at 648 nm and 858 nm respectively) were 
used in this study. By considering the 1 km reflectance data 
state Quality Assurance (QA) and the 500 m Quality Control 
(QC), we extracted the gridded 500 m multi-angular 
observations for thirty days, from 1 Dec. 2009 to 30 Dec. 2009, 
and synthesized a multi-angle observation dataset. Table. 1 lists 
the thresholds we used to control the quality of this dataset. 

We selected a 46 km ×  46 km mountainous area in the 

Tibetan Plateau (98°3'2″-98°31'29″E, 29°32'7″-29°57'1″N) as 
the study area, and a DEM with 1 arc-second spatial resolution 
from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer global DEM version 2 (ASTER 
GDEM2, https://lpdaac.usgs.gov/) dataset was projected to 
equal-area and used to describe the topography (Fig. 1). 

TABLE I 
QUALITY SCREENING FOR MOD/MYD09GA DATASETS 

1km QA 

Cloud Clear 
Cloud shadow No 
Land water Land 
Aerosol Not high 
Cirrus None or small 
Internal cloud No 
Adjacent cloud No 
Snow or Ice No 

500m QC Band quality Highest quality 
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Considering that the footprint of the imaging sensor expands 
with the VZA, that high heterogeneity in mountainous areas all 
can introduce high uncertainty into the multi-angular dataset 
[33]. And due to the high FOV of MODIS, the projection of a 
MODIS detector’s Instantaneous FOV (IFOV) onto the surface 
is approximately 2.0 and 4.8 times larger than at nadir along 
track and scan directions at the scan edge [32]. This will 
introduce panoramic error and further to lead a data repetition 
[34]. To avoid these effects, we upscaled 16 MODIS pixels 
(460 m) to a coarse (1840 m) pixel. The whole study area 
contains 625 coarse pixels, and each coarse pixel contains 2116 
DEM pixels. 

 

During these days, the mean local SZA was 55° at the 
imaging time, causing the presence of terrain induced shadows 
in the data. Fig. 1 (d) shows the number of valid observations 
for each coarse pixel (pixels with less than seven observations 
are left blank) in MOD09GA data. The maximum number of 
observations can reach 21, and 90% of the pixels (560 in total) 
with at least seven observations were used to test the Topo-KD 
algorithm. 

B. BRDF Modeling for All Terrains 

1) Kernel-driven Model for Flat Terrain 
The initial equation of the RLKB model [2] is given by 

Roujean et al. as: 

i v iso vol vol i v

geo geo i v

R( , , , ) f ( ) f ( )K ( , , )

f ( )K ( , , )

     
  

    
 

 
(1)

where volK  and geoK  represent the volume-scattering and the 

geometric-optical scattering kernels, respectively, which are 

functions consisting of the Solar Zenith Angle (SZA, i ), the 

View Zenith Angle (VZA, v ) and the Relative Azimuth Angle 

(RAA,  ). The weight coefficients ( isof , volf  and geof ) 

represent the weight of isotropic scattering, volume-scattering, 

and geometric-optical scattering kernels.  , , ,i vR      

represents the Bidirectional Reflectance Factor (BRF) of the 
corresponding band  . According to the least-squares method, 
the optimal weight coefficients can be retrieved theoretically 
from at least a minimum number of three observations, 
although since practically an adequate sampling of the viewing 
hemisphere is needed; at least 7 well distributed observations 
are required. Once an appropriate high quality BRDF model has 
been retrieved, reflectance in other sun-sensor geometries can 
then be calculated using these coefficients and the 
corresponding kernels.  

The RossThick and LiSparseR kernels have been selected for 
the current operational MODIS BRDF/albedo algorithm. The 
RossThick kernel is a single-scattering approximation of the RT 
theory by Ross [26] consisting of a layer of small scatterers with 
uniform Leaf Angle Distribution (LAD), a Lambertian 
background, and equal leaf transmittance and reflectance. The 
LiSparseR kernel is a reciprocal form of the LiSparse kernel, 
which is derived from the geometric-optical mutual shadowing 
BRDF model by Li and Strahler [7, 18]. Several studies have 
identified this RossThick-LiSparseR kernel combination as the 
best model for the operational MODIS BRDF/Albedo 
algorithm [27, 35, 36]. However, the RLKB models assume that 
the land-surface BRDF shape is symmetrical with regard to the 
azimuth. Because of topographic effects, this assumption is 
unacceptable over rugged terrain. 
 
2) Kernel-driven Model for Rugged Terrain 

An MRT model has been shown to represent primary 
topographic effects well with a high-resolution (< 50 m) DEM, 
(currently available for most land surfaces) [37]. Here we have 
adapted an RLKB model to rugged terrain by coupling the 
RLKB model using RTLSR kernel and the MRT model and 
constructing a new model, LKB_T. 

Research has suggested that the amount of topographic 
effects depends on the spatial resolution of the DEM [38]. Here, 
we assume that a DEM with a resolution higher than 50 m can 
fully capture the topographic variation of a surface with no 
micro-area topographic effects within the pixel [39]. As with 
earlier studies (e.g., Gao et al. 2012; Wen et al. 2008), each 
coarse pixel is first divided into small, smooth hill slopes 
(subpixels) that have different but known slopes, aspects and 
areas (Fig. 2) and the sun-sensor geometry is then rotated with 
respect to these gradients and aspect angles. The equivalent 
geometry was therefore introduced for this coordinate 
transformation, and the two local kernel functions for each 
subpixel were calculated. Note that the two kernel forms refer 
to direct and diffused radiation and have different reflectance 
features: BRDF kernels and Hemispheric-Directional 
Reflectance (HDR) kernels. For direct solar radiation, we have 

used two traditional BRDF kernels ( ( , , )vol i vk    and 

geo( , , )i vk    ), which are functions of both sun and sensor 

geometries, to describe the reflectance characteristic. For sky 

Fig. 1.  Topographical conditions of the test mountainous area. (a) DEM of the 
whole region; (b) and (c) are slope and aspect distribution, respectively; (d) 
Number of available observations in MOD09GA data. The Pixel A and B 
marked in panel (a), (b), and (c) are the example coarse pixels in Fig. 5. 
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diffuse and adjacent-terrain reflected radiation, a hemispheric-
directional reflectance is more suitable and so we incorporated 

two so-called “HDR kernels” ( ( )vol vh   and ( )geo vh  ), which 

are functions of only the position of the sensor [40]. Since the 
two adopted BRDF kernels are reciprocal, “HDR kernels” are 
equal in value to “Directional-Hemispheric Reflectance (DHR) 

kernels” ( ( )vol sh  and ( )geo sh  ), which can be obtained from the 

existing LUT [7]. 

 

For a mountainous surface, the coarse pixels’ kernel 
functions are obtained using a weighted mean. The MRT model, 
which describes the distribution of incoming energy and its 
transfer process among the subpixels, is used to calculate these 
weights (See Appendix B) and serves as the bridge for 
upscaling from subpixels to a coarse pixel. Consequently, the 

coarse pixels’ redefined kernel functions ( I
isoKer , I

volKer , and 
I

geoKer ), which we call integrated kernels, can be expressed as:  

 
, ,

, ,

, ,1 1

,1 1

[ ]

cos( ) [ / cos( )]

i j i j

i j i j

m n local incoming
v v i j i ji jI

m n

s v v i ji j

Ker E
Ker

k S

 
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 

 




 
 

 (2) 

where 𝑚  and 𝑛  are the lines and samples of the subpixels, 

, , ,s v S k     are the SZA, VZA, slope, and fraction of diffuse 

sky, respectively. ,i jv  and ,i jv  are the terrain blocking 

indicator and the projection coefficient of view direction for the 

subpixel  ,i j . localKer  is the local kernel function of a single 

slope. Its matrix form can be written as: 

1 1

er
i , j i , j

i , j i , j

local
i , j vol vol

geo geo

K k h

k h

 
 
 
 
 
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 (3) 

where ,i jvolk  and ,i jgeok  are subpixel BRDF kernels for 

volume-scattering and geometric-optical scattering; similarly, 

,i jvolh  and ,i jgeoh  are DHR kernels. 

,
incoming
i jE  is the normalized received energy of the subpixel 

 ,i j  and includes three parts (solar direct radiance, sky diffuse 

radiance and adjacent terrain-reflected radiance), its matrix 
form can be written as: 

 
, ,

,

,
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,

, ,

/ cos( )

/ cos( )

i j i j

i j

s s i j
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i j
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S
E

kV K S
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(4) 

where ,i js  and 
,i js  are the shelter indicator and the projection 

coefficient of the sun’s direction for subpixel  ,i j . ,
 

i jdV  and 

,i jK  are the sky view factor and terrain-reflected irradiance 

factor, respectively [41]. 
By using the MRT model to describe the RT process between 

subpixel slopes (terrain blocking, multi-reflecting), these three 
integrated kernels now contain the topographic effects. As with 

an RLKB model, the three weight coefficients ( isoF , volF  and 

geoF ), which represent the weights of isotropic scattering, 

volume-scattering and geometric-optical scattering, are 
introduced to calculate the BRF using the following formula: 

     
   
   

, , , , , , ,

, , ,

, , ,

I
i v iso iso i v

I
vol vol i v

I
geo geo i v

R DEM F Ker DEM

F Ker DEM

F Ker DEM
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  
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 

 

(5) 

where  , , , ,i vR DEM    represents the BRF of the 

corresponding band  . 
Note that the LKB_T model (Eq. (5)) has the same form as 

the RLKB model (Eq. (1)). When the terrain is uniformly flat, 
then the LKB_T is the same as the RLKB, and thus the RLKB 
model is a specific case of the LKB_T model. The reflectance 
for any other sun-sensor geometries can then be calculated 
using these coefficients. 
 
3) Self-adaptation to Terrain Mode 

In order to guarantee the reliability of the fitting results and 
retain the advantages of the RLKB model, we propose a hybrid 
algorithm that combines efficiency and accuracy by using both 
LKB_T and RLKB models and name the algorithm Topo-KD. 
And we define a Terrain Asymmetry Index (TAI) to classify the 
terrain properties of the pixels to improve computing efficiency. 
The TAI is calculated as: 

2

1

( / )
n

i
i

TAI Num PixelNum n


   (6) 

where the 360° azimuth is divided into 𝑛 major directions, and 

iNum  refers to the number of the aspects of subpixels in the i-

th major direction, PixelNum  is the total number of subpixels 
in a coarse pixel. The TAI essentially describes the aspect 
distribution in a coarse pixel. In this paper, we divided the 360° 
azimuth into 18 directions with a step of 20° (𝑛 is 18, the central 
azimuths of the 18 directions are 0°, 20°, 40°, 60°…). 

Fig. 3 shows the workflow of the Topo-KD algorithm. First, 
the mean slope, aspect, and TAI of each coarse pixel are 
calculated. Then, the coarse pixels are divided into flat pixels 
and rugged pixels according to the Slope Threshold (ST) and 
TAI Threshold (TT). If the pixel’s mean slope is larger than the 
ST, and its TAI is larger than the TT, it is classified as a rugged 
pixel, otherwise it is classified as a flat pixel. Finally, for rugged 

Fig. 2.  The topography of each coarse pixel can be described as several sunlit 
and shaded slopes using a high-resolution DEM. 
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pixels, both kernel models (RLKB and LKB_T) are triggered 
for a comparison of the fitting residuals. The model results with 
smaller fitting residuals are selected as output. For flat pixels, 
only the RLKB model is used (with whatever kernel 
combination is being utilized, RTLSR is used in this paper) for 
higher computation efficiency. Note that the ST and TT are 
adjustable parameters for a trade-off between accuracy and 
efficiency. In order to fully compare the fitting ability of the 
Topo-KD algorithm and the RLKB model, in this paper, both 
the ST and TT are set to 0. 

C. Simulation-based Evaluation 

Although many field campaigns have been conducted and a 
growing number of ground-based observation sites are 
available for the validation of the BRDF models, a quantitative 
evaluation of these models in mountainous areas remains a 
daunting challenge [42, 43]. Therefore, we want to know if a 
model that takes into account topography capture the 
reflectance of a rugged terrain. Here, we answer these questions 
by using simulated data based on the MRT model to compare 
the performance of the RLKB model with that of the Topo-KD 
algorithm using RTLSR kernel in the study area. 

Based on the MRT model, the bidirectional reflectance of a 

coarse pixel can be expressed by the reflectance of each 
subpixel’s slope. If the BRF and HDR of each slope are known, 
we can obtain the pixel’s BRF for any direction. We use the 
hotspot version of the light Scattering by the Arbitrarily 
Inclined Leaves model (SAILH) [44] to calculate the subpixels’ 
BRF and HDR, and then simulate the coarse pixels’ 
bidirectional reflectance. This canopy reflectance model 
assumes that the canopy is a homogeneous semi-infinite 
medium with Lambertian leaves, characterized by their 

reflectance and transmittance spectra ( lr  and lt ). Soil 

reflectance ( sr ) is specified at the lower boundary. Canopy 

structure is characterized by the LAI and the average LAD 
value. The hotspot effect is modeled using the ratio between 
leaf size and canopy height (HSF). Additional variables 

characterize the sun-sensor geometry ( s , v , s , v ) and the 

fraction of diffuse illumination ( k ). Note that we used the 
ellipsoidal leaf inclination distribution with random azimuth 

orientation ( m and ). The input parameters for the SAILH 

model are listed in Table. 2. 

 

For each coarse pixel, there were two simulated datasets 

under the sun direction s =55° and s =160° and s =55° and 

s =210° (The sun directions are from MOD09DA and 

MYD09GA data) in both the red and NIR bands were simulated 
using our forward BRDF simulation method. We simulated 576 
(16 VZAs × 36 VAAs) sun-sensor geometries under each sun 
direction, the VZA ranged from 0° to 75° with a step of 5°; the 
View Azimuth Angle (VAA) ranged from 0° to 350° with a step 
of 10°. We extracted simulated BRF in 32 sun-sensor 
geometries (shown in Fig. 4) from two simulated datasets as 
input data for the RTLSR model and the Topo-KD algorithm. 
To fit the reality, the 32 sun-sensor geometries are from MODIS 
observation data and we sampled the BRF in these directions 
with corresponding method for two simulated datasets (The 

simulated dataset under s =55° and s =160° was sampled 

with the black dots in Fig. 4, the other simulated dataset was 
sampled with the blue dots). Then we used the coefficients 
retrieved by the input data to predict the BRF for other view 

directions under the sun direction s =55° and s =160°. The 

comparisons between simulated and predicted BRF were used 

TABLE Ⅱ 
INPUT SETTING FOR SAILH SIMULATIONS 

Parameters Description Red band NIR band 

m  Average leaf angle 45° 45° 

 Elliptical eccentricity 0.10 0.10 

HSF Hot spot factor 0.10 0.10 

k  
Fraction of diffused sky 
irradiance 

0.10 0.10 

lr  Leaf reflectance 0.0546 0.4957 

lt  Leaf transmittance 0.0149 0.4409 

sr  Soil reflectance 0.1270 0.1590 

LAI Leaf area index 4 4 

 

  

 
Fig. 3.  Calculation process of the Topo-KD algorithm. Slopei and TAIi are 
slope and terrain asymmetry index of each coarse pixel. ST and TT are the 
slope threshold and TAI threshold, respectively. 
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to quantitatively evaluate the performance of RTLSR and 
Topo-KD through the determination coefficient (R2), the Root-
Mean-Square-Error (RMSE), the normalized RMSE (nRMSE) 
and the bias: 
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where n is the total number of angles, x and y are simulated and 
predicted BRF, respectively. 

 

D. Observation-based Validation 

The multi-angular satellite observations dataset mentioned 
above can provide reflectance data and sun-sensor geometries 
information. Both RTLSR and Topo-KD can use the dataset to 
fit the kernel coefficients and then estimate the entire 
hemispherical BRDF. We used the coefficients retrieved from 
Terra-MODIS observations to predict those observations from 
Aqua-MODIS and evaluated the accuracy of the predictions. 
We then calculated the RMSE and R2 between the predicted and 
the observed values of Aqua MODIS and compared the 
performance of the RTLSR model and the Topo-KD algorithm. 

III. RESULTS 

A. Evaluation of the LKB_T Model Based on Simulated Data 

Here, we used simulated data to compare the new proposed 
LKB_T model with the RTLSR model on the pixels, and the 
effect of rugged terrain on the BRDF shape of the pixel can be 
observed. Taking two pixels with small (Pixel A, Fig. 5 (a)) and 
large (Pixel B, Fig. 5 (b)) TAI and different slope as examples, 
we compared the influence of terrain on the BRDF 
characteristics. We can see that the aspects of pixel A is 
relatively uniformly distributed in all major directions and has 
a smaller slope compared to Pixel B, lead its simulated BRDF 
shape in the red and NIR bands is almost symmetric around the 
Solar Principal Plane (SPP). On the contrary, the pixel B 
present irregularly BRF distributions, especially in the large 
VZA direction (Fig. 5 (b-2) and (b-3)), which is caused by 

topographic effects. The simulated BRDF shapes in the red and 
NIR bands of these two pixels are similar, suggesting that 
topography has similar effects on different spectral bands. The 
above results indicate that topographic variations in a pixel lead 
to the irregular wrinkles in the BRDF shapes. 

 

In Fig. 6, we compared the performance of the RTLSR and 
LKB_T models on the pixels with rugged terrain (Pixel B in Fig. 
5). The BRF anisotropies for Pixel B in both the red and NIR 
bands are pronounced, especially in the large VZA region. 
There is a big difference between the RTLSR predicted BRDF 
shapes and simulated BRDF shapes for the red and NIR bands: 
In Fig.6 (a-2) and (b-2), they are strictly symmetric about the 
SPP (shown with red lines), which is determined by the 
symmetrical kernels of the RTLSR model, but the simulated 
BRDF shapes do not show symmetry about the SPP. On the 
contrary, the predicted BRDF shapes of the LKB_T model 
(shown in Fig.6 (a-3) and (b-3)) are very similar to the 
simulated BRDF shapes. it's worth noting that there is a change 
in BRF values caused by the terrain in Fig.6 (a-1) and (a-2) 
when VAA = 270° and VZA = 75°, the LKB_T model can 
accurately restore it but the RTLSR model failed. Fig. 6 (a-4) 
and (b-4) shows that the predicted BRF of the LKB_T model 
are closer to the 1:1 line and present better consistency with the 
simulated BRF, whereas a larger bias for the RTLSR model can 
be found. The R2 between simulated and predicted BRF of the 
LKB_T model are 0.9906 and 0.9890 in the red and NIR band, 
whereas those of the RTLSR model are 0.8402 and 0.6216, 
respectively. This suggests that the LKB_T model can more 
accurately capture the distortion of BRDF shapes in the 
hemispheric view due to topographic effects, but the RTLSR 
model fails to represent this phenomenon by neglecting 
topographic effects and because of its intrinsic symmetry along 

 
Fig. 4.  Distribution of sampled angles for model evaluation. The angles 
represented by black and blue dots are from MOD09GA and MYD09GA data.

 

Fig. 5.  Aspect distribution and simulated BRDF shapes of two pixels with 
small (Pixel A) and large (Pixel B) TAI. (a-1) and (b-1) are the distributions 
of the aspect of the two pixels, the percentages on the concentric circles mean 
the proportion of DEM pixels in each direction. The contour plots show the 
BRDF shapes of two pixels, (a-2) and (b-2) are BRF values in the red band, 
(a-3) and (b-3) are BRF values in the NIR band. The positions of the two pixels 
are marked in Fig. 1. 
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the SPP. 

B. Evaluation of the Topo-KD Algorithm Based on Simulated 
Data 

It is necessary to evaluate the Topo-KD algorithm using 
simulated data, we sampled simulated observations using the 
method shown in Fig. 4 and used Topo-KD and RTLSR to 
predict other directions and calculate predicted errors. The 
results are shown in Fig. 7 to 9. 

Here, we evenly divided the 625 pixels into six TAI levels 
(Level 1 to 6) from small to large based on TAI (Fig. 7), to fully 
compare the performance of the two models over different 
terrains. In Fig. 7 (a-1) and (b-1), for both red and NIR bands, 

the R2 of the Topo-KD are all close to 1 in all TAI levels, while 
the R2 of the RTLSR model gradually decrease from Level 1 to 
Level 6. The mean R2 of the Topo-KD in all pixels are 0.9906 
and 0.9881 in the red and NIR bands, whereas those of the 
RTLSR model are 0.9226 and 0.8764, respectively. For the 
RMSE and nRMSE, the mean nRMSE of the Topo-KD 
algorithm are 5.5% and 3.2% in the red and NIR bands, but 
those for the RTLSR model are 23.5% and 14.6%. For further 
comparison, the ranges of nRMSE of Topo-KD are 7.8% and 
13.1% in the red and NIR bands, whereas those of the RTLSR 
model are 75.0% and 69.1%, respectively. The RMSE and 
nRMSE of Topo-KD show no connection with TAI and are all 

 
Fig. 6.  Comparison of predicted BRDF shapes and accuracy in Pixel B (of Fig. 5) between the RTLSR and LKB_T models in the red (a) and NIR (b) bands. (a-1) 
and (b-1) are simulated BRDF shapes of Pixel B; (a-2) and (b-2) are predicted BRDF shapes from the RTLSR model; (a-3) and (b-3) are predicted BRDF shapes 
from the LKB_T model. The color bars represent BRF values. (a-4) and (b-4) compare the predicted accuracies of the RTLSR and LKB_T models. The red lines 
in (a-2) and (b-2) mark the SPP. 

 
Fig.7.  Comparison of the performance of the RTLSR model and the Topo-KD algorithm in the red and NIR bands. (a-1), (a-2), and (a-3) are the R2, RMSE, and 
nRMSE in the red band. (b-1), (b-2), and (b-3) are the corresponding error indicators in the NIR band. The transverse axes represent the values of TAI, and the 
vertical axes are the R2, RMSE, and nRMSE values. The width of the violin plots represents the frequency of the error distribution. 
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very small, but a positive correlation can be found between the 
RMSE and nRMSE of the RTLSR model and TAI. The above 
results suggest that, in both red and NIR bands, Topo-KD 
performs better than the RTLSR model in the study area, and 
the difference between the two models becomes more 
pronounced as the TAI increases. 

The biases between simulated and predicted BRF of the 
RTLSR model and Topo-KD in different directions are not the 
same: some direction biases are large, while some are quite 
small (absolute bias in SPP and CPP are shown in Fig. 8). We 
divided all the pixels into two levels for comparison: low TAI 
(TAI values rank in the top 50% from small to large) and high 
TAI (TAI values rank in the bottom 50% from small to large). 

In SPP (Fig. 8 (a-1) and (b-1)), the biases of RTLSR and 
Topo-KD peaks at the hotspot (VZA = -55°), this is due to the 
shortcomings of RTLSR in the estimation of the hotspot effect 
[45-47]. The Topo-KD algorithm shows larger bias at the 
hotspot than the RTLSR model, which should be due to the 
topographic correction of the LKB_T model amplifying the 
deficiencies of the RTLSR kernel. In other directions in SPP, 
the biases of Topo-KD are smaller than those of the RTLSR 
model, especially when VZA is large. The biases in CPP in the 
red and NIR bands are given in Fig. 8 (a-2) and (b-2), showing 
more pronounced differences between RTLSR and Topo-KD. 
In the case of the RTLSR model, the biases are larger in all 
directions. For the red band, the percentage of mean biases of 
the RTLSR model in low TAI and high TAI reach 7.2% and 
13.7% in CPP, whereas those of the Topo-KD are only 1.0% 
and 1.3%. In the NIR band, the values for the RTLSR model 
are 6.5% and 13.6%, while the percentage of mean biases of 
Topo-KD are only 0.6% and 0.7%, respectively. It is clear that 
the Topo-KD algorithm effectively reduces the errors in SPP 
and CPP compared to the RTLSR model.  

 

To further investigate and compare the difference between 
RTLSR and Topo-KD, the mean biases between simulated and 
predicted BRF over the entire hemispheric view are shown in 
Fig. 9, again dividing all the pixels into two levels based on TAI 
(like Fig. 8). Overall, the polar plots of Topo-KD show a wider 
range of green and light blue colors in both the red and NIR 
bands over two types of terrain. On the contrary, the polar plots 
of the RTLSR model have a large proportion of dark blue and 
yellow regions, especially at large VZA, which means that the 
results of Topo-KD are closer to the simulated data across the 
hemispheric view. In the red band, the percentages of mean bias 
of the RTLSR model are 12.3% in low TAI and 19.1% in high 
TAI pixels, while those of Topo-KD are 2.2% and 2.3%, 
respectively. In the NIR band, the percentages of the RTLSR 
model are 7.2% in low TAI and 15.4% in high TAI pixels, while 

 
Fig.8.  Absolute bias of RTLSR and Topo-KD in two special planes in the red 
and NIR bands. (a-1): SPP in the red band; (a-2): Cross-Principal Plane (CPP) 
in the red band. (b-1): SPP in the NIR band; (b-2): CPP in the NIR band. 

 
Fig. 9.  Mean bias between simulated and predicted BRF from RTLSR and Topo-KD in all directions in the red (a) and NIR (b) bands. (1) and (2) are the bias of 
the RTLSR model in low and high TAI; (3) and (4) are the bias of the Topo-KD algorithm in low and high TAI. 
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those of the Topo-KD are 1.2% and 1.2%, respectively. The 
Topo-KD algorithm show low bias in most observation 
directions, except around hotspots, especially in large VZAs, 
the predicted accuracy is improved compared to the RTLSR 
model. 

C. Validation of the Topo-KD Algorithm Based on MODIS 
Observations 

In the evaluation based on simulated data, Topo-KD show 
lower predicted errors compared to the RTLSR model. 
However, it is worth exploring whether the Topo-KD algorithm 
can also perform well using the real satellite data. In this section, 
we used the coefficients retrieved from Terra-MODIS 
observations to predict the Aqua-MODIS observations and 
evaluated the accuracy of the predictions in the entire study area. 
The results are shown in Fig. 10 and 11. 

In Fig. 10, we divided the pixels with at least seven 
observations in the entire study area into four TAI levels (Level 
1 to 4), from small to large. The scatterplots in Fig. 10 represent 
the degree of agreement between the BRF from RTLSR and 
Topo-KD and from MODIS observations in the red and NIR 
bands. The equations of the lines of best fit of the results of the 
RTLSR model show a gradual deviation from the 1:1 line from 
Level 1 to 4. Whereas the gradients of the lines of best fit of 
Topo-KD are all larger, which means that the predicted data are 
closer to the 1:1 line. In the red band (Fig. 10 (a) and (b)), the 

R2 of the RTLSR model decrease from 0.915 to 0.756 from 
Level 1 to 4, and the RMSE increase from 0.0107 to 0.0189. 
The R2 of Topo-KD decrease from 0.936 to 0.812, and the 
RMSE increase from 0.0094 to 0.0168. In the NIR band (Fig. 
10 (c) and (d)), the R2 of the RTLSR model decrease from 0.867 
to 0.705, and the RMSE increase from 0.0185 to 0.0331. In 
contrast, the R2 of Topo-KD decrease from 0.904 to 0.779, and 
the RMSE increase from 0.0154 to 0.0291, indicating that the 
results of Topo-KD are more consistent with the MODIS 
observations. Overall, the Topo-KD algorithm is able to reduce 
the predicted errors by about 10% in all terrain conditions. The 
errors and uncertainties in the MODIS observations lead to a 
small correlation between the errors of Topo-KD and TAI. 
After all, it is difficult to obtain ideal multi-angle BRF over 
rugged terrain. 

Fig. 11 (b) and (c) show the distribution of fitted residuals 
(represented by RMSE) of the RTLSR and Topo-KD in the 
entire study area. In the red band, by comparing the fitting 
residues of the RTLSR and Topo-KD (Fig. 11 (b-1) and (b-2)), 
we can find that more dark blue areas are displayed in the maps 
of Topo-KD, which means that the overall fitting residuals are 
smaller; a similar pattern is also present in the NIR band. For 
the whole study area, the mean RMSE of Topo-KD are 0.0051 
(Fig.11 (b-1)) and 0.0077 (Fig.11 (c-1)) in the red and NIR 
bands, whereas they are 0.0065 (Fig.11 (b-2)) and 0.0106 

 
Fig. 10.  Comparison of the BRF predicted by RTLSR and Topo-KD and by MODIS under different terrain in the entire study area. The red lines are the lines of 
best fit. The colors correspond to point density from lowest (blue) to highest (yellow). The Level 1 to 4 are the TAI levels from small to large. 
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(Fig.11 (c-2)) for the RTLSR model, respectively. The Topo-
KD algorithm reduces errors in the red and NIR bands by 21.5% 
and 27.4%, which indicate that Topo-KD can provide more 
accurate land surface reflectance data for the retrieval of other 
parameters. There is a positive correlation between the fitting 
residuals of the RTLSR model and the TAI values as shown in 
Fig. 11 (a), (b-2) and (c-2), especially in the area enclosed by 
the red ellipse. However, this phenomenon is improved in the 
map of the Topo-KD algorithm. In some pixels, Topo-KD and 
RTLSR both show poor fitting accuracy, which may be caused 
by noise in the measurements, errors in the data, and imperfect 
model assumptions. At the same time, the distribution of the 
observation angles also affects the retrieved accuracy (see 
Discussion Section A.). 

IV. DISCUSSION 

A. Sensitivity to the Distribution of Observations 

We believe that if the distribution of the observation angles 
is not uniform enough, the RTLSR model and the Topo-KD 
algorithm cannot describe the bidirectional reflection of the 
surface well. So, we used simulated data and three sampling 
methods (Method A, B, and C) to validate the influence of the 
distribution of observation angle on fitting accuracy of the 
models. 

The three sampling methods are shown in Fig. 12 (a): Method 
A: The sampling angle is concentrated within 0°-90° azimuth; 
Method B: The sampling angle is distributed within 0°-180° 
azimuth; Method C: its observation angles are uniformly 
distributed in the whole hemispherical space. All methods used 
16 angles for retrieval but with different distributions of their 
sampling angles. Fig. 12 (b-1) and (b-2) show the RMSE and 
standard deviation (error bars) of the RTLSR and Topo-KD 
models over low and high TAI terrains when three different 
methods are used in the red and NIR bands. For the red band in 
low TAI, the RMSE of Method A for the RTLSR model reaches 
the maximum value, and Methods B and C decrease 
sequentially, their standard deviation are similar. In high TAI 
pixels in the red band, there is the same trend in the two models. 
But the difference is that the RMSE and standard deviation of 
the methods all become larger, especially for the RTLSR model. 
These suggest that it will result in larger errors when the 
distribution of observations is concentrated, which leads to a 

decrease of the retrieved accuracy for both RTLSR and Topo-
KD models. Moreover, this effect is exacerbated in rugged 
terrain. The trend is similar in the NIR band. Due to the 
difficulties of obtaining high-quality observations over rugged 
terrain, the distribution of available observations from a single 
sensor may be concentrated in certain directions after quality 
control, which has been addressed by Wen et al. with a 
multisensor combined BRDF inversion model. [48]. 

B. Accuracy and efficiency evaluation of the Topo-KD 
algorithm 

For applications of the Topo-KD algorithm, accuracy 
optimization and computational efficiency are important 
indicators and are also of interest to users. We analyzed and 
discussed the accuracy optimization and computing efficiency 
of the Topo-KD algorithm using simulated data. In this section, 
we did not consider the inversion results around the hotspot 
because of the shortcomings of the RTLSR kernels about the 
hotspot. We describe the accuracy optimization level with the 
following equation: 

A

A

B
= 100%

A
Bbias bias

bias




 
(8)

where Abias  is the absolute bias between the simulated and 

retrieved BRFs from model A, which was mentioned in 
Equation (7).  

In Fig. 13 (a), Topo-KD(n) means that n time adjacent 
terrain-reflected radiances are considered by the Topo-KD 
algorithm. Compared to the RTLSR model, the mean 
optimization rate of Topo-KD(0) can reach 80.12% and 85.43% 
in the red and NIR bands. The mean optimization rate of Topo-
KD(1) compared to Topo-KD(0) can reach 20.18% and 37.22% 
in the red and NIR bands. This means that, after considering the 
reflected radiation from adjacent terrain, the accuracy of the 
Topo-KD algorithm can be improved by more than 20%. The 
optimization rate is higher in the NIR band, which should be 
due to that the multi-scattering within the canopy is larger in the 

 
Fig. 11.  Maps of (a) TAI for each pixel, and fitting residues of the Topo-KD 
algorithm and the RTLSR model in the (b) red and (c) NIR bands. (1) are the 
fitting residuals of Topo-KD and (2) are the residuals for RTLSR. The red 
solid ellipses mark a prominent area. 

 

Fig. 12.  Three angle sampling methods and their predicted error. (a): angles 
distribution of three sampling methods; (b-1) the RMSE of three methods in 
the red band; (b-2) the RMSE of three methods in the NIR band. Error bars 
represent the standard deviation. 
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NIR band and the adjacent topographic radiation is more 
pronounced.  

In Fig. 13 (b), we compare the run time of the Topo-KD 
algorithm using simulated data to retrieve the entire study area 
compared to the RTLSR model. When dividing all pixels into 
rugged pixels, Topo-KD(1) and Topo-KD(0) take 4.4 and 3.1 
times longer, respectively, compared to the RTLSR model. 
When the terrain indexes are adjusted to divide 25% of the 
pixels into rugged pixels, Topo-KD(1) and Topo-KD(0) take 
1.8 and 1.5 times longer, respectively. The reduction in their 
running times implies that the pixel classification using the 
terrain index threshold is effective in improving the 
computational efficiency of the Topo-KD algorithm. 

 

C. Algorithm Advantages and Applications 

Global ecological and environmental monitoring relies on 
accurate estimates of land surface variables and biological 
parameters (such as albedo and LAI) over mountainous areas 
[17]. However, it is difficult to obtain high-quality reflectance 
data for areas with a complex terrain. Previous studies have 
reported that rugged terrain greatly influences BRDF modeling 
[20, 49, 50], and in our results, we also can see that the BRDF 
shape of the pixel can be affected by the terrain (Fig. 5). But 
none of the existing models can be used operationally to fit 
satellite multi-angular reflectance and model BRDF because of 
their neglect of multiple-scattering effects between subpixel 
terrains and complexity [17]. 

The Topo-KD algorithm presents several advantages in more 
rigorously modeling rugged terrain. First, the LKB_T model 
combines the RLKB and MRT models, uses a high-resolution 
DEM to correct illumination and viewing geometry, and takes 

into account the reflected radiation from adjacent terrain. This 
makes Topo-KD can better describe the RT process over rugged 
terrain areas. And compared with other existing models such as 
TCKD [25], the Topo-KD algorithm performs a better fitting 
accuracy. This should because of the consideration of multiple-
scattering effects in its kernel model LKB_T and the avoidance 
of Taylor expansion approximation. Second, the linear forms of 
the RLKB models are retained, which allows the Topo-KD 
algorithm can couple with other kernel functions. A new LUT 
should be used to store all the required parameters to further 
improve its calculation efficiency. Third, the Topo-KD 
algorithm allows users to adjust the terrain thresholds ST and 
TT settings so that they can trade-off between accuracy and 
efficiency according to the situation. 

The Topo-KD algorithm can be used to fit satellite multi-
angular reflectance and model BRDF to participate in the 
retrieval and estimation of other parameters. For example, the 
coefficients from the Topo-KD algorithm can reflect the canopy 
density on the land surface. Thus, Topo-KD can also be used to 
retrieve canopy structure parameters such as LAI from the 
coefficients like the RLKB models. Besides, the three 
“generalized-kernels” of the LKB_T model, which are 
functions of both sun-sensor geometry and terrain factors, allow 
it to be used to estimate albedos in conjunction with a LUT of 
pre-computed kernel integrals, but the traditional LUT of kernel 
integrals needs to be replaced by a more complex table. Based 
on an assumption that terrain remains constant over a period of 
time, these factors can be calculated in advance and used 
repeatedly. Therefore, Topo-KD can also be used to estimate 
spectral albedos by building such a LUT. So, we believe that 
the Topo-KD algorithm is a good choice to model BRDF in 
rugged areas, and it also provides the ability to better estimate 
the surface albedo and LAI. 

Currently, many operational BRDF/Albedo algorithms use 
the RLKB model which does not explicitly consider terrain to 
produce global products. The Topo-KD algorithm is designed 
as an extension of the kernel-driven model, retaining the easy-
retrieval linear form. It can also improve the retrieval accuracy 
over rugged terrain with guaranteed computational efficiency 
and ensure product consistency. Therefore, we think that Topo-
KD has the potential to be used as an operational algorithm for 
producing global products after more validations and 
optimization in future work. 

D. Limitations and Future Work 

The construction and validation of the Topo-KD algorithm 
still presents some challenges. First, the Topo-KD algorithm 
needs a high-quality DEM to describe the terrain, which 
inevitably introduce more input data uncertainty. This may 
make the LKB_T exhibit similar or even larger output 
uncertainty than RTLSR when satellite observations with poor-
quality are used. Therefore, to improve the reliability of the 
results we compared the results of LKB_T with those of 
RTLSR in the Topo-KD algorithm and selected the one with a 
smaller error. Second, it remains difficult to obtain ideal 
reflectance data due to the high frequency of cloudiness over 
rugged terrain [46]. Although we have eliminated some poor-

Fig. 13.  Comparison of the accuracy optimization and computational 
efficiency for the Topo-KD algorithm. Topo-KD(n) means that n time adjacent 
terrain-reflected radiances are considered. Panel (a) show the accuracy 
optimization of the Topo-KD algorithm. White and gray backgrounds 
represent the red and NIR bands. (b) is the comparison of run time used by the 
Topo-KD model to retrieve the entire study area using simulated data in 
different pixel classifications, its vertical axis represents multiples of RTLSR 
running times. 
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quality data through quality control, cloud detection screening 
algorithms never work perfectly and residual clouds may 
contaminate the remaining observations flagged as cloud-free. 
Third, 30 days of multi-angle observation data were used in this 
study to ensure enough observations, but the BRDF 
characteristics of the study area may change during this period, 
which can affect the validation results. Finally, the range of TAI 
varies with the number of DEM pixels within a coarse pixel, so 
users do not have a good reference standard when using this 
index for pixel classification. In future work, we will optimize 
this terrain index and provide a TAI reference value for pixel 
classification. 

This paper focused on construction and preliminary analysis 
of the algorithm. Future work will include sensitivity analysis 
and additional validation of the Topo-KD algorithm. We will 
conduct an on-site validation to better understand the 
performance of the algorithm and reduces uncertainty of 
satellite data. With the improvement of sand-table technologies 
and the introduction of three-dimensional printing, a ground-
based multi-angle observation device [51] can be combined 
with miniature topographical models based on real DEM. We 
also can obtain high-quality DEM data from field 
measurements to avoid geo-registration errors. After more 
comprehensive validations and analysis of the Topo-KD 
algorithm, we will further improve its computational efficiency 
and reliability. Moreover, some recent research advances for 
single-slope BRDF modeling [16, 52] can also be used to 
improve the accuracy of our Topo-KD algorithm. 

V. CONCLUDING REMARKS 

The RLKB models are widely used to retrieve the 
bidirectional reflectance of the land surface but do not explicitly 
include the influence of terrain. In this paper, we addressed this 
limitation by proposing a hybrid algorithm, Topo-KD, which 
combines the traditional RLKB model with our more explicit 
LKB_T model. By using RTLSR kernel, simulated data from 
the SAILH model and multi-angular observations data were 
employed to compare the fitting ability of the Topo-KD 
algorithm and the RTLSR model in rugged terrain. The 
conclusions are as follows: 
1) Rugged terrain causes variability in the BRDF shape of the 

pixel. The RTLSR model cannot accurately describe the 
BRDF characteristics of a rugged pixel because of its 
inherent symmetric kernel, whereas the LKB_T shows a 
better performance. 

2) In algorithm evaluation and validation, Topo-KD shows 
consistently lower errors than RTLSR. Based on the 
simulated data, the mean nRMSE of Topo-KD are 5.5% 
and 3.2% in the red and NIR bands, and those for the 
RTLSR model are 23.5% and 14.6%. Against satellite 
observations data, the mean RMSE of Topo-KD are 0.0051 
and 0.0077 in the red and NIR bands, whereas the mean 
RMSE of the RTLSR model are 0.0065 and 0.0106, 
respectively. The Topo-KD algorithm reduces errors in the 
red and NIR bands by 21.5% and 27.4%. 

3) The difference between Topo-KD and RTLSR depends on 
the terrain: the advantages of the Topo-KD algorithm are 

more pronounced over extremely rugged terrain. 
According to the algorithm evaluation based on the 
simulated data, the mean nRMSE of Topo-KD in low and 
high TAI pixels are 6.1% and 6.0% in the red band, 
whereas those of the RTLSR model reach 15.5% and 
34.7%, respectively. In the NIR band, the mean nRMSE of 
Topo-KD are 2.8% and 3.8%, and those of the RTLSR 
model are 6.7% and 27.6%, respectively. These trends are 
similar in the algorithm validation.  

The Topo-KD algorithm explicitly considers the topographic 
effects which can provide a more detailed description of 
multiple-scattering between adjacent mountains, improving the 
accuracy of retrieval on rugged terrain, and it inherits the 
advantages of the RLKB models. We think it can be a better 
choice in BRDF modeling for rugged areas and have potential 
as a new operational algorithm after more validations and 
analysis.
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APPENDIX 

A. Nomenclature 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Mountain Radiative Transfer Model 

The adverse topographic effects in a pixel’s directional 
reflectance mainly lie in six aspects (Fig. A1): 1) slope impacts 
incident radiation; 2) some slopes cannot receive direct solar 
radiation because it is blocked by the surrounding slopes; 3) 
some of the sky-diffused radiation is obstructed by surrounding 
slopes; 4) adjacent terrain reflects the radiation to the target 
slope; 5) some slopes cannot be seen by the sensor because of 
the overlap of surrounding slopes or the so-called mountain-
block effect; and 6) local sun-sensor geometry on each slope 
varies and each slope’s BRDF rotates with the equivalent 
geometry. 
1) Direct solar radiation 

As shown in Fig. A1 (a), topography causes a change in 
illumination geometry and the direct solar irradiance on a slope 
can be expressed as:  
 cos( ) / cos ssun s s sun hE i E     (A1) 

where sun hE   is the direct solar irradiance of a horizontal plane 

at the bottom of the atmosphere; si  is the angle between the 

incident ray and the slope surface normal; this angle is a 

function of slope S , aspect A , incident zenith s  and 

azimuth angles s , and can be expressed as:  

 cos( ) cos cos sin sin cos( )s s s s si S S A        (A2) 

Moreover, some slopes may be sheltered by surrounding 
slopes, meaning that the target slope may “fall” into the 
surrounding slopes’ shadows and be unable to receive direct 
radiation from the sun (Fig. A1 (b)). We thus define a Boolean 

shadow coefficient s  to represent whether the target slope can 

receive direct solar radiation. If the solar position and DEM are 
known, we can then obtain the incident direct solar irradiance 
of each slope. Equation (A1) can be further expressed as 
follows: 

 

Label Description Label Description 

Topography and geometric variables 

sun hE  , s k y hE   
Direct solar and hemispherical sky diffused 
irradiance on a horizontal plane at the 
bottom of atmosphere 

s , s and 

v , v  

Sun-sensor geometry (solar zenith and 
azimuth angles, view zenith and azimuth 
angles) 

  Relative azimuth angle s u n sE  , sky sE   Direct solar and hemispherical sky diffused 
irradiance on a slope 

S , A  Slop angle and aspect re fE  Adjacent-terrain reflected irradiance on a 
slope 

i  The angle between the incident ray and the 
slope surface normal PL  Energy received by surrounding slopes 

 

s , v  

 
Projection coefficients of solar and view 
direction respectively 

k , K  Fraction of diffused sky irradiance and 
fraction of terrain-reflected irradiance 

s , v  Shelter indicators of solar and view 
direction, 0 or 1 

Reflectance and spectral variables 

dV  The sky view factor, between 0 and 1 R Bidirectional reflectance of a coarse pixel 

s , v  Equivalent solar and view zenith angle   Spectral band 

s , v  Equivalent solar and view azimuth angles ,i jBR D F  Directional-directional reflectance of the 
slope (i, j) 

MT  
The angle between the line from 
surrounding slope to target slope and the 
normal of surrounding slope 

,i jHDR , ,i jDHR  Hemispheric-directional and directional-
hemispheric reflectance of the slope (i, j) 

 

PT  

 
The angle between the line from 
surrounding slope to target slope and the 
normal of the target slope 

volk , geok  BRDF kernels of volume scattering and 
geometric optical scattering 

pd S  The area of the target slope vo lh , ge oh  HDR kernels of volume scattering and 
geometric optical scattering 

MPr  The length from surrounding slope to 
target slope volh , geoh  

 
DHR kernels of volume scattering and 
geometric optical scattering 

n  Number of DEM lines or samples in a 
coarse pixel 

localKer  Local kernel function of a single slop 

 
  

 
Shelter indicator between surrounding 
slope and target slope, 0 or 1 

IKer  Redefined kernel function of a coarse 
pixel, named as “generalized-kernels” 

Radiation variables isof , volf and g e of  Weight coefficients of kernels 
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 _ _ / cossun s s s sun h sE E      (A3) 

2) Sky diffused radiation 
In this paper, we adopted Dozier’s method to calculate sky 

diffused radiation (Dozier and Frew 1990). The diffused solar 
irradiance on the slope can be expressed as (see Fig. A1 (c)):  
 _ _sky s d sky hE V E  (A4) 

where the sky view factor dV  is introduced as the ratio of sky 

diffuse scattering received on a slope to that on an unobstructed 
horizontal surface. Depending on the extent of the terrain shade, 
the sky view factor varies between 0 (minimum terrain shade) 

and 1 (maximum terrain shade). sky hE   is the hemispherical 

sky diffused irradiance at the bottom of the atmosphere. 
 
3) Adjacent-terrain reflected radiation 

The adjacent-terrain reflected radiation (see Fig. A2 (d)) is 
obtained through the method established by Proy et al. [15]. 
Assuming the surface of the subpixel is Lambertian, this 
method is applied with a filter with a 5 by 5 pixels matrix with 
subpixel M located in the center of the matrix, and subpixel Ps 
neighboring M. The reflected irradiation comes from each 
surrounding point P to M and can be calculated point-by-point 
from: 

 21

cos cos
( )

N P M P P
ref P

MP

L T T dS
E

r




  (A5) 

where PL  is the energy received by the surrounding slopes, 

MT  is the angle between the line from surrounding slope to 

target slope and the normal of each surrounding slope, PT  is the 

angle between the line from surrounding slope to target slope 

and the normal of the target slope, pdS  is the area of the target 

slope, MPr  is the length from surrounding slope to target slope. 

  is 1 if the surrounding slope and target slope are 
unobstructed, otherwise it is 0. As with the definition of sky 
view factor, we defined the terrain-reflected irradiance factor as: 

 
_

ref

sun h

E
K

E
  (A6) 

4) Local sun-sensor geometry 
Topography does not only affect the received radiation; it can 

also change the observation geometry. We thus need to switch 
the coarse pixel’s sun-sensor geometry to an equivalent 
geometry under the local coordinate system of each slope. As 
Fig. A1 (f) shows, the transfer formula is:  

 

, , , ,

, ,
,

, , ,

cos cos cos sin sin cos( )

sin( )sin
tan

sin cos cos( ) cos sin

s v s v s v s v

s v s v
s v

s v s v s v

S S A

A

S A S

   
 


  

   


 

 
 (A7) 

where s  and v  represent the equivalent solar and view 

zenith angle; s  and v  represent the equivalent solar and 

 
Fig. A1.  Six aspects of topographic effects on directional reflectance compared with a flat surface. In each panel, the upper part of each drawing shows the effect 
of topography and the lower part shows the effect on a flat surface. Panel (f) shows the local sun-sensor geometry. 
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view azimuth angle. 
5) Bidirectional reflectance of the coarse pixel 

The coarse pixel’s bidirectional reflectance, which is affected 
by subpixel topography, is defined as the ratio of the reflected 
radiation by sensor-visible area to the received radiation of that 
area. The slopes that can be seen by the sensor are divided into 
two categories: sunlit and shaded (Fig. 2 (a)). In rugged areas, 
the components of downward radiation on a sunlit slope come 
from three different sources: (1) direct solar radiance not 
scattered by the atmosphere; (2) sky diffused radiance; and (3) 
adjacent-terrain-reflected radiance. The shaded slope cannot 

receive direct solar radiance. As previous studies have shown, 
the surface reflectance for direct solar radiance is a directional-
directional reflectance (BRDF), while the surface reflectance 
for sky diffuse radiance and terrain-reflected radiance is more 
like a hemispheric-directional reflectance (HDR) (Fig. 2 (b)). 
The low-resolution pixel’s bidirectional reflectance 

 , , , ,s s v vR DEM     can be written as (A8), where v  and 

s  indicate whether the slope is visible by the sensor and 

whether the slope is sunlit, respectively; k  is the fraction of 
diffused illumination.

 

 
 

, , , ,

, ,

, , , , ,1 1

,1 1

{ / cos( ) }

cos( ] [ / cos( )]

i j i j i j i j

i j i j

n n

v v i j i j s s i j i j i ji j
n n

s v v i ji j

S BRDF HDR kVd K
R

k S

 

 

 

 

      
 

 
 

        (A8) 

 

 
Fig.  A2.  Difference between incoming radiation of sunlit and shaded slopes (a) shows three sources on sunlit slope 1 and only two sources on shaded slope 2; 
(b) shows two kinds of directional reflectance-BRDF and HDR). 
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