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Abstract— The Chinese GF-1 satellite, the first satellite of
the China High-resolution Earth Observation System launched
in 2013, can be used to help estimate evapotranspiration (LE),
which is important for myriad hydroclimatic and ecosystem
science and applications. We propose a novel approach to use
the GF-1 visible and near-infrared (VNIR) measurements at
16 m and 4-day resolutions to estimate LE. The NIR (near-
infrared)–red spectral-domain (NRSD) model is coupled to a
perpendicular soil moisture index (PSI) and a perpendicular
vegetation index (PVI). We applied the model to the Huailai
agricultural region of China with 55 scenes of GF-1 imagery
during 2013–2017 and validated using ground measurements with
footprint models for two eddy-covariance (EC) flux tower sites
and one large aperture scintillometer (LAS) site. The results
illustrate that the terrestrial daily LE can be estimated with
squared correlation coefficients (R2) of 0.77–0.84 ( p < 0.01)
and root-mean-square error (RMSE) values of 17.9–21.5 W/m2

among all three sites. The site-calibrated statistics are improved
by 0.14–0.25 for R2 and decreased by 4.2–8.3 W/m2 for RMSE
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as compared to the commonly used universal PT-JPL model.
A satisfactory performance is achieved across all experimental
conditions, encouraging the application of the NRSD model to
estimate LE for other broad regions.

Index Terms— Chinese GF-1, Evapotranspiration, NIR–red
spectral space, perpendicular soil moisture index (PSI), perpen-
dicular vegetation index (PVI).

I. INTRODUCTION

EVAPOTRANSPIRATION (LE), i.e., the total water loss
from surface soil evaporation, vegetation transpiration,

and vegetation interception evaporation, plays a crucial role
in agricultural drought detection, crop yield forecasting, water
resource management, and climate change research [1]–[7].
In much of the temperate semiarid regions of Northern China
(e.g., the Huailai agricultural region), water deficiency is
placing major constraints on crop production and economic
development [8], [9]. There is, therefore, a need to quantify
water availability by estimating terrestrial LE. While con-
ventional detailed ground-based observations [e.g., Lysimeter,
energy balance Bowen ratio (BR), and eddy-covariance (EC)
observations] can accurately measure LE at the local scale
from a few meters to hundreds of meters [10]–[16], a limited
number of in situ measurements, their representations of
the landscape, and associated high costs prevent us from
having spatially and temporally continuous spectra LE at the
landscape and regional scales that are needed for timely and
location-specific management of ecosystems.

Remote sensing is the most feasible means to estimate
terrestrial LE across large regions by retrieving terrestrial
biophysical variables that affect LE, including land surface
temperature (LST), albedo, soil moisture (SM), land cover
types, leaf area index (LAI), and vegetation index (VI, e.g.,
normalized difference VI and NDVI) [17]–[22]. Especially,
the Chinese GF-1 satellite, the first satellite of the Major
National Science and Technology Project of China, has pro-
vided high spatial resolution (16 m) remotely sensed data with
wide coverage (800 km) and high revisit frequency (4 days)
for estimating land surface biophysical variables on regional
scale [23]. However, very few literature works have reported
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the real-time LE models with good robustness to estimate LE
using Chinese GF-1 data. Therefore, the development of the
land surface LE methods from Chinese GF-1 data is urgently
required.

Currently, satellite-based approaches for terrestrial LE esti-
mations fall into two categories: thermal LST-based methods
[19], [24]–[26] and optical VI-based methods [27]–[30]. The
former includes surface energy balance (SEB)-based one-
and two-source models [17], [20], [31]–[33] and spatial con-
texture information-based LST-VI triangular or trapezoidal
methods [34]–[36]. The overviews of these methods have been
provided since the 1990s [19], [37]–[39]. Although thermal
LST-based methods can easily capture water stress information
without requiring soil hydraulic property and precipitation
data, they are difficult to apply for the operational estimations
of large heterogeneous regions due to the coarser spatial
resolution as compared to visible and near-infrared (VNIR)
data and infrequent availability of undisturbed thermal infrared
images [40], [41]. Moreover, some satellite data of high spatial
resolutions lack thermal observations such as data generated
by the Chinese GF-1, a high spatial resolution satellite with
four spectral bands in the optical domain, but no thermal band.

Optical VI-based methods rely on satellite-derived densities
of green vegetation, with varying sensitivities [42]. Compared
to the thermal LST-based methods, VI-based methods can
estimate terrestrial LE at higher spatial resolutions from short-
wave satellite, with a time sampling frequency of VI being
a less concern, because VIs change insignificantly compared
with LST in several days [43]–[45]. More importantly, several
previous studies have reported that optical VI-based methods
perform better at LE estimation than thermal LST-based meth-
ods [46], [47]. For instance, Cleugh et al. [48] compared LST-
based SEB models to VI-based methods from the Moderate
Resolution Imaging Spectroradiometer (MODIS) data and
concluded that VI-based methods adequately estimate LE in
Australia, whereas LST-based SEB models fail due to large
errors in sensible heat flux (H ) estimations propagated from
small errors in LST. Similarly, Glenn et al. [46] compared
satellite-based methods (LST-, mid-infrared-, and VI-based
methods) and found that VIs provide the better estimations
of LE than thermal bands [ root mean square error (RMSE)
of 18.5 W/m2 for the VI-based method versus 24.7 W/m2

for the LST-based method]. The Ecosystem Spaceborne Ther-
mal Radiometer Experiment on Space Station (ECOSTRESS)
employs a combination of high-resolution LST measured on
the International Space Station with high-resolution VI from
Landsat and Sentinel to produce operational LE at 70 m [49].

However, VIs do not account for SM impacts on the
soil evaporation (LEs) and cannot detect soil evaporation
rate changes under severe water stress. Fortunately, spatially
distributed crop coefficient (Kc) values calculated from precip-
itation (P) and irrigation data from soil water balance models
have been widely applied to estimate LEs for agricultural
water resource assessment [50]. Subsequently, several auxil-
iary methods based on meteorological variables [diurnal air
temperature range (DTaR), relative humidity (RH), and vapor
pressure deficit (VPD)] and microwave-derived SM products
have been successfully used to parameterize SM contributions

in LEs estimation [6], [18], [29], [45], [51], [52]. However,
these methods cannot estimate LEs at high spatial resolu-
tions due to sparse meteorological observations and coarse-
resolution microwave SM products.

Fortunately, several NIR (near-infrared)–red spectral space
methods have been developed based on the reflective and
absorptive features of canopy and bare soils in the NIR and red
spectral domain (NRSD) to characterize the spatial variability
of high-resolution SM for monitoring surface dryness condi-
tions [53]–[56]. For example, Ghulam et al. [54] proposed
a perpendicular drought index (PDI) based on the spatial
characteristics of moisture distribution in NIR–red space from
Landsat data and found that the PDI is highly correlated
with ground-measured 0–20 cm mean SM values with the
correlation coefficients of R2 = 0.49 (p < 0.01). The distance
drought index (DDI) [57] and triangle soil moisture index
(TSMI) [58] were also successfully derived from the NIR–red
triangular space for SM and drought monitoring. In principle,
high-resolution LEs can be estimated from SM variability
in the NIR and red spectral spaces of Chinese GF-1 data,
and the NIR–red spectral space method may perform better
than methods based on meteorological variables and coarse-
resolution microwave SM products. However, there is a lack
of similar studies on estimating high-resolution terrestrial LE
using the NIR–red spectral space method and Chinese GF-
1 data.

Here, we propose an NRSD model by integrating the
perpendicular soil moisture index (PSI) and the VI (PVI)
from Chinese GF-1 data to calculate the Priestley–Taylor (PT)
coefficient for estimating daily terrestrial LE. We have two
main objectives. First, we evaluate the proposed NRSD model
using ground measurements with the footprint models for
EC flux tower sites (EC1 and EC2) and one large aperture
scintillometer (LAS) site in the Huailai agricultural region of
China for 2013–2017. Second, we apply the NRSD model to
the Huailai agricultural region to map daily LE.

II. THEORETICAL BACKGROUND AND MODEL LOGIC

Since the proposed model for estimating the PT coefficient
is based on the NIR and red bands of Chinese GF-1 data,
a brief introduction to this NIR–red spectral space is
provided in Section II-A. Then, NIR–red-based vegetation
and SM indices and an NRSD model for LE estimation are
described in Sections II-B and II-C, respectively. Finally,
the comparisons to another PT model, PT-JPL [18], are
provided in Section II-D.

A. NIR–Red Spectral Space

The presented scatter plot of the atmospheric corrected NIR,
red reflectance spectrum from a Chinese GF-1 image contain-
ing different land cover types shows a typical triangular shape
(Fig. 1). The position of a pixel in the triangle is determined by
several environmental factors, including SM, soil properties,
and vegetation types and cover. As SM and vegetation cover
are the two main factors that determine the position of a
random pixel in the NIR–red spectral space, different surface
dryness conditions and vegetation types have a specific regular
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Fig. 1. (a) NIR–red spectral space from Chinese GF-1 data. (b) Definitions of
the soil line and PVI (revised after [53], [55]).

distribution in this spectral space [53]. Here, pixels with high
NIR reflectance and low red values are distributed in the upper
vertex of the triangle (Fig. 1), i.e., highest levels of vegetation
coverage and vegetation transpiration. As surface vegetation
varies from full cover (maximum transpiration) and partial
cover (partial transpiration) to bare soil (no transpiration) in
a given pixel, its positioning moves toward the soil line that
connects wet bare soil to dry bare soil. Therefore, pixels with
equal vegetation fractional cover (Fc) values yield isolines
parallel to the soil line in the NIR–red spectral space.

The soil line characterizes the spectral behavior of nonveg-
etated pixels, with its varying surface SM considerably [54],
[55]. Pixels with the same SM values are positioned along
the isolines and are perpendicular to the soil line [58], [59].
As the surface SM increases, isolines move from the upper
right of the NIR–red spectral space to the lower left. In other
words, the distance between the coordinate origin and any
pixel in the NIR–red spectral space represents the severity of
surface water stress. The farther this distance is, the greater
the degree of surface water stress and the less SM there will
be. However, these concepts associated with the soil line and
upper regions of the triangle present uncertainties resulted
from the complexities of soil properties and vegetation cover
in the NIR–red spectral space [53], [58].

B. NIR–Red-Based Vegetation and Soil Moisture Indices

1) Perpendicular Vegetation Index: The PVI is an index for
vegetation growth conditions by calculating the distance from

Fig. 2. Definition of the PSI (revised after [55]).

isolines to the soil line toward the upper vertex in the NIR–red
spectral space (Fig. 1) [59]

PVI = ρnir − kρred − b√
1 + k2

(1)

where ρnir and ρred refer to the reflectance of the NIR and red
bands, respectively, k is the slope of the soil line, and b is
the interception of the soil line. The PVI was designed based
on lines running perpendicular to the soil line. As pixels on
a particular isoline move away from the soil line, PVI will
increase from 0 to the maximum value.

2) Perpendicular Soil Moisture Index: To highlight the SM
response to the evaporation of nonvegetated surface, a simple
PSI, following the PDI [54], is developed by calculating the
ratio of the distance between line AC and line BC in the NIR–
red spectral space (Fig. 2). AC is the distance from a random
pixel A in the NIR–red spectral space to the line for extremely
dry bare soil (minimum SM) (CD) perpendicular to soil line
ED, and BC denotes the distance between the line of wet
bare soil (maximum SM) (BE) perpendicular to line ED and
line CD. As shown in Fig. 2, soil line ED characterizes the
variation in surface SM from maximum SM (point E), partial
SM (point G), and minimum SM (point D). Thus, the PSI
value of a given pixel A can be expressed as follows:

PSI = AC

BC
= G D

E D
= ρd,red − ρred + k(ρd,nir − ρnir)

ρd,red − ρw,red + k(ρd,nir − ρw,nir)
(2)

where ρnir and ρred refer to the reflectance of the NIR and
red bands for pixel A, respectively, ρd,nir and ρd,red refer to
the reflectance of the NIR and red bands for fixed pixel D
with minimum SM, respectively, ρw,nir and ρw,red refer to the
reflectance of the NIR and red bands for fixed pixel B with
maximum SM, respectively, and k is the slope of the soil line.
The PSI was developed based on the line that is parallel to the
soil line. As pixels on a parallel line of soil line move from
point C (D) to point B (E), PSI values will increase from
0 to 1.

C. NIR–Red Spectral Domain Model for LE Estimation

The NRSD model is developed based on the PT model
framework by combining PVI and PSI to calculate PT para-
meter (�) to estimate daily terrestrial LE. The basic PT model
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Fig. 3. Flowchart of the developed model, including inputs, intermediate variables, models, and outputs.

is expressed as follows:

LE = φ
�

� + γ
(Rn − G) (3)

where � is the PT parameter characterizing the actual surface
resistance to LE and is generally set as 1.26 under well-
watered conditions. � is the slope of the saturated vapor
pressure curve, γ is the psychrometric constant, and Rn and
G are the surface net radiation and soil heat flux, respectively.

Since PVI represents the vegetation vigor influencing vege-
tation transpiration while PSI reflects surface SM controlling
soil evaporation, � can be acquired from �max and fractional
vegetation cover (Fc) by partitioning PVI and PSI. Therefore,
the final equations proposed in this study are as follows:

φ = φmax

[
(1 − Fc)PSI + Fc

PVI

PVImax

]
(4)

Fc = NDVI − NDVImin

NDVImax − NDVImin
(5)

where �max is the maximum � and equals 1.26 in this study,
as the maximum LE rate is assumed to occur under wet
conditions. PVImax is the maximum PVI during the growing
season for individual pixels. NDVImin and NDVImax are the
minimum and maximum NDVI for the study period set as
constants of 0.05 and 0.85, respectively. In the NRSD model,
� arrives at 1 (maximum transpiration) when Fc equals 1
because PVI arrives at PVImax at this point. On the contrary,
� equals the PSI value that varies from 0 (extremely dry bare
soil and no evaporation) to 1 (wet bare soil and maximum
evaporation) when Fc is set to 0. Fig. 3 shows a flowchart
of the inputs, intermediate variables, outputs, and complete
procedures of the NRSD model.

Daily Rn was estimated using the following equation devel-
oped by Wang and Liang [60]:

Rn = Rs(1 − ∂)(α0 + α1Tmin + α2NDVI + α3RH) (6)

where a0 = 0.5129, a1 = 0.0025, a2 = 0.1401, and
a3 = 0.2604. Rs is the daily surface incident shortwave radi-
ation (W/m2) and can be calculated using the solar constant,
the relative Earth–Sun distance, the solar incidence angle, and
broadband atmospheric transmissivity [31] (Appendix). Tmin

is the daily minimum air temperature. ∂ refers to the surface
broadband albedo of GF-1 wide-field view (WFV) data and
is retrieved using the Sun’s algorithm [61]. We also used a
simple empirical algorithm employing daily Rn and Fc with a
fixed empirical coefficient (ag = 0.18) to estimate daily soil
heat flux (G) [7]

G = αg(1 − Fc)Rn . (7)

D. Comparisons to the PT-JPL Model

The PT-JPL LE model is also based on the PT model
framework by including both atmospheric (RH and VPD) and
ecophysiological constraints (LAI and fraction of absorbed
photosynthetically active radiation, FPAR) to estimate ter-
restrial LE [18]. The PT-JPL model uses RHVPD as an SM
constraint to estimate soil evaporation under unsaturated SM
conditions. The validation conducted at the 39 global flux
tower sites shows that the PT-JPL model can explain more than
80% of the variation in cumulative LE with an RMSE of 13%
of the observed mean [18]. PT-JPL has been widely identified
as a high performing satellite LE model for multialgorithm
intercomparisons [62], [63]. PT-JPL forms the core of the LE
retrieval for NASA ECOSTRESS mission [49].
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Fig. 4. Study area: (a) locations of the study area across Northern China. (b)
Huailai agricultural region with a false-color composite from GF-1 imagery
acquired on 9 July (DOY 190) 2017 and (c) maps of land cover types and
the location of EC and LAS sites.

III. STUDY AREA AND DATA PROCESSING

A. Study Area and Flux Sites

The Huailai agricultural region is located in the Haihe River
Basin of Northern China at coordinates 40.3425◦–40.3621◦
North latitude and 115.7774◦–115.8188◦ East longitude and
covers an area of approximately 7.849 km2 (Fig. 4). The
climate of the area is semihumid and semiarid with moderate
rainfall and high air temperatures occurring in the summer
and little rainfall occurring during the fall and winter. The
average annual temperature and precipitation are 10.5 ◦C
and 542.5 mm, respectively. Land cover is dominated by
agricultural land, with other types accounting a small portion,
including forests, grassland, water bodies, wetland, bare soil,
and urban areas. Agricultural land is mostly located in plains,
where urbanized areas are also located. Among annual crops
grown, maize is the most widespread summer crop. Forests
and grasslands are mostly located in hilly areas. The cropping
systems of the Huailai agricultural region are typical of
agricultural features of Northern China and have substantially
enhanced economic development in the region.

Both experimental test 1 (EC1, 40.3491◦N, 115.7880◦E)
and experimental test 2 (EC2, 40.3574◦N, 115.7923◦E) were
conducted in the western and eastern parts of the Huailai
agricultural region, respectively. The two sites are governed
by continuous maize within the footprint of EC towers. The
height of the EC system is 10 and 40 m at the EC1 and
EC2 sites, respectively. Each EC system includes a 3-D sonic
anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT,
USA) for acquiring 3-D velocity and temperature and an open-
path infrared CO2/H2O gas analyzer (Li-7500, Li-Cor, USA)
for measuring CO2 and H2O density [64]–[66]. In addition,
one LAS system with a transmitter (40.3596◦N, 115.8023◦E)
and receiver (40.3522◦N, 115.7825◦E) was installed across the

EC2 tower in the north-to-south direction with the EC2 system
placed in the center of the optical path of the LAS. The LAS
was produced by Kipp & Zonen, Delft, The Netherlands, and
the effective heights and path lengths were set to 14 and
1870 m, respectively [64], [67].

B. Eddy-Covariance and Large Aperture Scintillometer
Measurements

Raw data at 10 Hz recorded by the EC systems were
processed, including sonic temperatures, CO2/H2O lag correc-
tion relative to the vertical wind component, spike removal,
and gap filling using EdiRe software (University of Edinburgh,
http://www.geos.ed. ac. U.K./abs/research/micromet /EdiRe).
Half-hourly turbulent surface heat fluxes (LE, Rn , H , and G)
and other climate data [such as air temperature (Ta), wind
speed (WS), vapor pressure (e), RH, and VPD] were acquired
from both EC1 and EC2 sites. Half-hourly LE, H , G, and
meteorological variables were subsequently aggregated into
daily means. When missing data accounted for more than
20% of all data for a given day, the value for this day was
recorded as missing. Otherwise, daily values were obtained
by multiplying the averaged half-hourly rate by 48 (half
hours). Due to energy imbalance, we adopted the fixed BR
method [68] to correct the measured LE. As optical LAS
instruments can only measure H over its path length, LE
values measured from LAS instruments were calculated using
the residual of the SEB equation (LE = Rn–G–H ). Average
Rn and G values within the calculated LAS source area
footprint were acquired by weighting multiple Rn and G
measurements from the EC systems [65], [69], [70].

As the footprints of the EC and LAS measurements are
tens of meters and several kilometers, respectively, we used
the footprint model to calculate the source area of the EC and
LAS measurements. For EC measurements taken at a single
point, the flux footprint, FEC (m, n, zh), was calculated based
on an Eulerian analytic flux footprint model [71]

FEC(m, n, zh) = Gn(m, n)Fn(m, zh) (8)

where m is the downwind distance, n is the crosswind wind
distance, zh is the measurement height of EC, Fn(m, zh)
is the crosswind integrated footprint, and Gn(m, n) is the
Gaussian crosswind distribution function of the lateral disper-
sion. By combining the path-weighting function of the LAS
[72] with the above footprint function, we obtain the flux
footprint [FLAS (u, v, zo)] of the LAS measurements

FLAS(u, v, zo) =
∫ u1

u2

H (u′)F(u′ − u, v ′ − v, zo)du′ (9)

where H (u′) is the path-weighting function of the LAS, u1

and u2 are the locations of the LAS transmitter and receiver,
respectively, zo is the measurement height of the LAS, u′and
v ′ denote the points along the optical length of the LAS, and
u and v are the coordinates upwind of each point (u′, v ′).
The daily flux source area of the EC and LAS measurements
was determined by averaging every half-hour footprint when
sensible heat fluxes were larger than 0.

To validate satellite-derived LE, we considered pixels within
the source area as validation pixels, and the weighted average
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Fig. 5. Chinese GF-1 overpass dates used for estimating daily LE over the
study site during 2013–2017.

LE was obtained by summing the product of the estimated LE
and relative footprint weights (i.e., the relative contribution)
within each pixel

LEα =
q∑

i=1

(pi × LEi) (10)

where LEa refers to the weighted average LE from remote
sensing, which has the same spatial representativeness as the
ground observations, pi is the relative weight of each pixel,
LEi is the estimated LE for each pixel, and q is the number
of pixels within the source area [73].

C. Chinese GF-1 and Ancillary Data

The Chinese GF-1 satellite was launched from the
Jiuquan Satellite Launch Centre (Gansu Province, China) in
April 2013. It is a sun-synchronous orbit satellite with two
panchromatic/ multispectral (PMS) cameras and four WFV
cameras that produce 16-m images every 4 days at a swath
of 800 km [23]. The Chinese GF-1 WFV data include four
bands: band 1 (blue: 0.45–0.52 μm), band 2 (green: 0.52–
0.59 μm), band 3 (red: 0.63–0.69 μm), and band 4 (NIR:
0.77–0.89 μm). The raw Chinese GF-1 data were released
as a digital number (DN) grid, and we conducted the radi-
ance calibration to acquire surface spectral reflectance by
converting the DN value of the raw image. Then, the at-
surface reflectance was obtained from at-satellite reflectance
based on atmospheric radiation transfer simulation models and
atmospheric correction functions [74]. Finally, we used ENVI
software to conduct the geometric correction, and the resam-
pling was based on a two-order polynomial transformation by
the bilinear interpolation method. We used 55 cloud-free GF-
1WFV images for 2013–2017 to retrieve NDVI, PSI, and PVI
(Fig. 5). Land cover maps were developed using FROM-GLC
(Finer Resolution Observation and Monitoring of Global Land
Cover) products with a 30-m resolution [75].

Due to the relatively homogenous atmospheric conditions
within the small Huailai agricultural region, we selected in
situ measurements of Ta, Tmin, and e as the fixed values for
estimating Rn , G, and LE across this region. We also used
digital elevation models (DEMs) with a 30-m spatial resolution
(resampled to a 16-m resolution by linear interpolation) to

Fig. 6. Examples of standard “NIR–red spectral space” from GF-1 data
for all pixels of the study area at two different dates. (a) July 9, 2017. (b)
November 1, 2017.

Fig. 7. Spectral-domain-based triangle feature space for the EC1 site during
the period of fluxes measurements (2014–2017): dependency of NIR–red
reflectance values with the measured PT parameter � and DOY.

extract elevation, slope, and aspect values for estimating
incident surface solar radiation (Rs).

IV. RESULTS ANALYSIS

A. Validation of the NRSD Conceptual Basis From Ground
Observations

To illustrate the conceptual basis of the NRSD method,
an NIR–red spectral triangular space was applied and scenes
from two seasonal periods (i.e., July 9, 2017 for mid-summer
and November 1, 2017 for late fall) were chosen. Fig. 6 shows
the corresponding NIR–red spectral triangle shape by plotting
NIR and red reflectances of GF-1 data for all pixels. Although
general triangle shapes and soil lines for different scenes are
easily recognizable for each date, there are great differences in
the positions of the cluster pixels within the different triangles
during the two growing seasons. Especially for PVI values
within these two scenes, relatively high values occur in mid-
summer, and low values occur in late fall. Moreover, Fig. 6
also shows that the ideal application of the NRSD method
is operational only in the area of interest and includes a full
range of land surface types and conditions (from water body
and bare soil to full vegetation). On the contrary, the NRSD
method provides a unique estimation of LE within a random
pixel by determining a specific soil line, which only requires
the use of the atmospheric corrected NIR, red reflectance of
the study area.

An example of an NRSD scatterplot of the atmospheric
corrected NIR, red reflectance from GF-1 data is plotted for
the EC1 site for EC 2013–2017 observations (Fig. 7). Fig. 7
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Fig. 8. Sensitivity analysis of � to ρnir and ρred specified between 0.13 and
0.6, incrementing by 1%.

shows the dependency of NIR–red reflectance data on the
observed PT parameter � changes. Experimental test data
scattered over the NIR–red spectral space form a triangular
shape, demonstrating the presence of a soil line and its vertical
lines. In the upper left vertex of the scattering, measured data
points identify the maximum LE condition (� ∼ 1.26). On the
contrary, data points reflect moderate LE conditions (� ∼
0.63) in the lower left vertex of the triangle, whereas minimum
LE conditions (� < 0.12) are shown in the upper right vertex
of the plot. These data points are coherent with the expected
seasonal dynamics of the study areas. The flux observations
collected during DOYs 150–240 (June–August) are located
closer to the upper left vertex of the plot. The flux observations
collected during DOYs 0–90 (January–March) and 260–350
(late September–early December) scatter in the lower left
vertex of the triangle. Conversely, scattering in the upper
right vertex mainly includes flux observations collected during
DOYs 90–150 (March–May). The first period corresponds to
the highest vegetation cover with ideal temperatures and water
availability, creating the highest � values (>1.0). The second
period reflects wet bare soil with high SM due to a low VPD,
which leads to moderate LE. A high VPD and spring drought
characterize the third period, localizing corresponding data
points close to the upper right vertex.

For a given surface cover condition characterized by PVI
within the NIR–red spectral space, the measured data points
follow the expected seasonal variation under local climate
conditions. Outside the growing season, with lower PVI values
(<0.1), variations in the observed � values follow changes in
PSI with the lowest � values observed in the spring and mod-
erate � values observed in the fall and winter. On the contrary,
the observed � changes correspond to PVI variability with the
highest � values observed during the growing season (mainly
in the summer). These reliable results support the feasibility
of the NRSD method for calculating the PT parameter (�) to
estimate agricultural regional LE.

To test the sensitivity of NRSD model to �, we select the
EC1 site, which performs relatively better than the EC2 site,
to analyze the dependence of � on ρnir and ρred (Fig. 8). �
declines from 0.62 to 0.44 when ρnir increases from 0.13 to
0.3 and then � increases to 0.73 when ρnir reaches 0.6 and
ρred is set as a constant (0.05). On the contrary, when ρnir is

Fig. 9. Comparison of the estimated daily Rn and G values using GF-1 data
with the corresponding ground measurements for the EC1 and EC2 sites.

Fig. 10. Example of spatial patterns in daily Rn , G , NDVI, and Albedo of
July 9, 2019.

set as a constant (0.5), � changes from 0.68 to 0.65 when
ρred changes from 0.4 to 0.6. In sum, both ρnir and ρred have
significant influences on �.

B. Evaluation of the NRSD Model

1) Modeling and validation of net radiation and soil heat
flux: As both Rn and G are the critical forcing measures,
we compared the estimated daily Rn and G from GF-1 data
to the ground measurements. Fig. 9 shows a good agreement
between the estimated daily Rn and the ground measurements.
For the EC1 and EC2 sites, R2 values obtained from com-
paring ground measured and estimated daily Rn values are
greater than 0.92 (p < 0.01), whereas the RMSE values are
8.3 and 9.9 W/m2, respectively. Moreover, the overestimations
of 2.1 and 2.7 W/m2 were observed for daily Rn at the EC1 and
EC2 sites, respectively. The observed errors in estimated daily
Rn appear ascribed to both systematic biases and propagated
errors from the forcing data and ground measurements. On the
contrary to the ground measurements, the estimated daily G
yielded the R2 values of 0.65 and 0.50 (p < 0.01), RMSE
values of 5.2 and 7.7 W/m2, and bias values of 1.9 and
5.8 W/m2 for the EC1 and EC2 sites, respectively (Fig. 7).
It is clear that more accurate daily G estimates were obtained
for the EC1 site than for the EC2 site. This may be attributed
to the use of a fixed coefficient (0.18) to estimate daily G with
no adjustments in surface properties because of lacks in the
sufficient data.
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Fig. 11. Comparison of the PT parameter φ as measured and estimated using
the NRSD model for EC1 and EC2 sites.

Fig. 10 shows an example of spatial patterns in daily Rn

and G for DOY190, 2017 over the Huailai agricultural region
and the corresponding NDVI and albedo values. The estimated
Rn shows high values for crop fields and low values over
urban areas, which is consistent with NDVI spatial patterns
and runs contrary to albedo patterns. On the contrary, G maps
are negatively correlated with NDVI, potentially due to the
positive contributions of NDVI and negative contributions of
albedo to the estimated Rn via (6), whereas (7) shows a
negative NDVI contribution to the estimated G characterized
by Fc.

2) Modeling and Validation of the Priestley–Taylor Coeffi-
cient : We compared the estimated PT coefficient (�) to the
corresponding ground-measured � derived from LE, Rn , G,
and Ta . Fig. 11 shows that the NRSD model-derived � esti-
mates versus ground-measured values present similar seasonal
variations and match well with the R2 values of 0.53 and 0.47
(p < 0.01), RMSE values of 0.16 and 0.24, and bias values
of 0.04 and 0.14 for both the EC1 and EC2 sites, respectively.
In general, the � estimates tend toward high values in the
summer due to high vegetation cover and soil water content,

Fig. 12. Spatial pattern of the estimated � for different dates.

whereas low � values occur in the other seasons as crops are
harvested and other vegetation declines.

Fig. 12 shows the spatial pattern of the estimated � for
three days. In the top left section of the domain covered with
water, the estimated � shows high values for 3 days. Water
bodies and saturated soil in these regions may not only be
accurately captured by Fc or PVI but also are characterized
by PSI in real time due to the effects of moisture (Fig. 12). For
other parts of the domain, the estimated � shows the smallest
spatial variations across the images (except in the top left part
of the domain), representing the narrowest spatial variations
in Fc and PVI on DOY (day of year) 133. On DOY 190,
spatial variations reach their highest point when Fc and PVI
arrive at their maximum values. Smaller spatial variations are
found on � maps for DOY 255 with a decrease in Fc and
PVI (Figs. 12 and 13). The NRSD method, which only uses
Fc and PVI sensitive to vegetation growth conditions, may not
identify small differences in �. On the contrary, PSI’s ability
to account for the effect of surface SM on soil evaporation
can be considered useful in compensating for the fact that PVI
cannot capture bare soil information. To conclude, the strong
performance of the proposed NRSD procedure confirms its
reliability for practical applications.

3) Evaluation of Estimated LE Using Ground Observations
and PT-JPL Model Simulations : The estimated daily LE
obtained from the NRSD and PT-JPL models with a 16-m
spatial resolution was validated by EC and LAS observation
data, respectively. Fig. 14 shows the good agreement between
EC measurements and estimates derived from the complete
NRSD model for the two sites [R2 = 0.77 (p < 0.01) and
RMSE = 17.9 W/m2 for site EC1 and R2 = 0.79 (p < 0.01)
and RMSE = 21.5 W/m2 for site EC2]. Relative to the PT-
JPL model, the average RMSE obtained from the proposed
method decreases by 8.3 and 4.2 W/m2, and R2 increases by
0.25 and 0.14 (p < 0.01) for sites EC1 and EC2, respectively.
Fig. 14 also shows the comparison of the estimated LE and
ground measurements calculated LE from LAS data. It is clear
that the NRSD model can account for 84% of LE variability
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Fig. 13. Chinese GF-1-derived maps of Fc, PSI, and PVI for different dates.

Fig. 14. Comparison of the measured and estimated LE. (a) EC measured and
estimated LE from NRSD model. (b) EC measured and estimated LE from
PT-JPL model. (c) LAS calculated and estimated LE from NRSD model. (d)
LAS calculated and estimated LE from PT-JPL model.

and that the RMSE is 19.2 W/m2, whereas the PT-JPL model
can only explain 74% of LE variability, and the RMSE is more
than 24 W/m2.

Fig. 15 shows a time series for daily LE estimates and
EC measurements (and the calculated LE from LAS data)
for the two EC sites (and the LAS source area). In general,
the measured and estimated seasonal curves are in good
agreement. In comparison to the PT-JPL model, the NRSD
model yields seasonal LE variations that are closest to the
EC measured values (and calculated values from LAS data).
Therefore, the proposed method without calibration ranks
among models that provide a better fit to EC measurements
(and calculated LE from LAS data).

Fig. 16 shows the spatial distribution of daily LE estimated
from the model and the PT-JPL model for 3 days. For the
spring day (DOY 133), the LE estimated from the model

Fig. 15. Time series for daily LE estimates and EC measurements (and the
calculated LE from LAS data) for two EC sites (and LAS source area).

Fig. 16. Maps of LE derived from the NRSD model and the PT-JPL model
for different dates, respectively.

varies from 0 to 90 W/m2, with the highest values found in
the top left part of the domain that is covered with water.
However, the PT-JPL model fails identifying the water bodies
for their evaporation and estimated only 0–30 W/m2. There
are modifications in place for PT-JPL to include open water
evaporation as a separate retrieval routine [76]. For the summer
day (DOY 190), estimated LE reaches the maximum range
(0–180 W/m2), with the smallest values in urban-dominated
regions on the right and the highest values in the other regions.
Meanwhile, the PT-JPL model uses meteorological variables
(RH and VPD) with a coarse spatial resolution instead of
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satellite reflectance data to characterize soil evaporation, and
LE values estimated from the PT-JPL model range from 60 to
180 W/m2. For the mid-fall day (DOY 255), the estimated
LE is similar to values in the spring at 0–90 W/m2, with the
top left part of the domain, showing the highest LE. On the
contrary, LE values estimated from the PT-JPL model are
concentrated at 50–90 W/m2 likely because the PT-JPL model
fails to estimate soil and water evaporation from satellite
reflectance data.

V. DISCUSSION

A. Theoretical Hypothesis for the NRSD Model

The theoretical framework of the NRSD model is the
original PT equation, which determines the partitioning of
available energy (Rn–G) into LE and H by adjusting the
PT coefficient � [18], [29], [77]. The actual �, a key
regulator for LE estimation, is generally calculated from the
product of �max (∼1.26) and ecophysiological constraints.
Under unsaturated surface conditions where SM is limited,
ecophysiological constraints are highly correlated with surface
SM and vegetation parameters [28], [51], [78]–[80]. Here,
novel ecophysiological constraints are developed using PVI
and PSI retrieved from the Chinese GF-1 reflectances without
auxiliary data to reflect vegetation information and surface SM
for LE estimations, respectively.

Numerous studies have demonstrated that � values in the
PT model can be considered a function of LAI (or NDVI) and
SM for different biomes at the site and regional scales [81],
[82]. Unfortunately, SM data sets at finer spatial resolutions
are not currently available although numerous efforts have
been made by taking the advantage of thermal LST data to
downscale microwave SM products (e.g., SMAP) [83], [84].
However, thermal LST data not only reflect SM but also
ambient atmospheric variables (e.g., Ta , RH, and WS) [85].
On the contrary, PSI retrieved from atmospheric corrected
reflectances of the NIR and red bands excluding effects of
ambient atmospheric variables is stable in characterizing SM
and soil evaporation for a short period [54], [58]. The previous
studies have also highlighted the SM deficit using the NIR–
red spectral space method while neglecting soil evaporation
fraction (EFs) estimates [53], [57]. Here, we used PSI as a
robust quantitative indicator for the effect of SM stress on LEs ,
especially for drought periods. The PSI-based model conserves
a physical characterization of soil evaporation within the PT
model framework and serves as an alternative means to replace
SM models to estimate agricultural field LE.

In this study, PVI offers improved crop transpiration fraction
(EFc) estimations because it is highly correlated with varia-
tions in vegetation water stress by adjusting vegetation den-
sities according to environmental changes [86], [87]. Relative
to NDVI, PVI saturates less for dense canopy cover, whereas
NDVI saturates asymptotically [88]. Importantly, PVI appears
more responsive to canopy leaf structure variations [89], and
the changes in NIR reflectance are caused by the crop internal
structures of leaf cells, leaf chlorophyll concentrations, and
stomatal conductance [90]. Although the Fc·PVI/PVImax term
only includes the combined effects of both PVI and NDVI on
�, the preliminarily results confirm that the NRSD method

has ideal theoretical foundations and interpretability and yields
good results.

B. Performance of the NRSD Model

1) Capacity for PSI and PVI to simulate LE: Despite its
simplicity and soil line determination capacities, the NRSD
model effectively estimates LE for the two case studies. The
experimental findings illustrate that LE estimation using the
NIR–red spectral space method markedly conserves strong
correlations with ground measurements. This may be attributed
to the fact that within the NRSD model, PSI synchronizes PVI
but which responds differently to surface dryness that varies
by water retention capacities [40], [53]. However, we found
the performance of the NRSD model at site EC1 to be superior
to that at site EC2 (Fig. 11). This may be partially attributed
to differences in estimated available energy (Rn–G) for the
two sites. The biome of the source area of the EC1 site is
cropland (maize), whereas the landscape of the source area of
the EC2 site includes a mixture of cropland and water bodies.
Large errors will be introduced when using both (6) and (7)
to calculate available energy for water bodies [7], [60].

For agricultural fields covered with annual maize, the joint
use of time series PVI profiles with a fixed PVImax and PSI
values for nonvegetation indirectly considers the effects of the
mixture of cropland and other land cover types [54], [86]. This
behavior is demonstrated by source area EC2, where different
cover types (cropland, water bodies, and bare soil) over 5
years’ result in different PSI and PVI profiles, still producing
an ideal LE estimation. This underlying feature of the NRSD
model can be successfully applied to complex regions that
include a variety of cover types.

While the PT-JPL model performs better than most
radiation-based models due to its partitioning of total LE and
fewer uncertainties in driving data [61], [63], few studies have
attempted on regional LE estimation at relatively high spatial
resolutions (e.g., 16 m), as the PT-JPL model fails to acquire
finer spatial resolution EFs from RHVPD. The NRSD and PT-
JPL models differ that the proposed model considers a finer
spatial resolution PSI as the SM constraint to parameterize for
LEs estimations [91]. This is also central to why the NRSD
model performs better than the PT-JPL model as confirmed
from the observation data of the EC and LAS (Figs. 11 and
12). Bei et al. [92] used the modified satellite-based PT (MS-
PT) model and GF-1 data to estimate daily LE at the EC1 site,
and their validation results show that the MS-PT model is
more accurate (R2 of more than 0.75 and RMSE of less than
20 W/m2) and captures more detailed spatial information. The
previous studies also report that at the EC1 site, TD-TESB
(temperature-domain two-source energy balance model), N95-
TSEB (original two-source energy balance model), and MET-
RIC (satellite-based energy balance for mapping ET with
internalized calibration) yield daily LE values with RMSE
values of 18.9, 21.4, and 20.3 W/m2, respectively [9].
These comparable results also illustrate the strong capac-
ity for the NRSD model to accurately estimate agricultural
field LE.
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2) Uncertainties of LE Estimates : While the proposed
model has been successfully extended to estimate spatially
continuous LE at the agricultural field scale, errors in EC
and LAS ground observations, model forcing data biases, the
spatial heterogeneity of footprints of source areas (for EC and
LAS) and GF-1 subpixels, and the framework of the NRSD
model introduce biases into LE estimates. The EC technique
is considered to be the best method for directly measuring
LE at small scales (∼tens-to-hundreds of meters), but the
typical error of its LE is approximately 20–50 W/m2 [93], and
gap filling from half-hour intervals to daily periods will also
introduce a 5% bias into the daily LE values [94]. Unfortu-
nately, EC measurements suffer from energy imbalances (H+
LE �= Rn − G), and the energy closure ratio [Re = (H+
LE)/(Rn − G)] is approximately 0.8 for global FLUXNET
measurements [95]. Although some scientists have attributed
such energy imbalances to the fact that EC measurements only
measure small eddies and ignore large eddies in the lower
boundary layer and while we also correct LE in this study,
errors resulting from the unclosed energy problem remain
unclear [68], [93].

Biases of H measured by LAS also lead to 10%–20% errors
in LE estimates [38]. An LAS will overestimate H due to
the higher frictional velocity derived from Monin–Obukhov
similarity theory (MOST), which constitutes the theoretical
basis from which an LAS can measure H , though an LAS
provides an aggregated flux over a large scale (∼ several
kilometers) [96]. Furthermore, the previous studies find the
great differences of approximately 20% between the results
of different LASs [97]. In addition, the biases of ground-
measured meteorological parameters (e.g., RH, Ta , and Tmin)
and satellite-retrieved Rs , Rn , G, albedo, and Fc introduce
errors into estimated LE values [1], [60]. For instance, we cal-
culated biases in estimated daily Rn from Chinese GF-1 data at
approximately 2–3 W/m2 for the EC1 and EC2 sites, resulting
in errors of more than 3 W/m2 for daily LE estimates.

Validation from the footprints of EC and LAS observa-
tions may have partially solved the mismatch between GF-
1-derived LE and ground measurements [64], [67]. However,
for the Huailai agricultural region, which includes a mixture
of cropland, bare soil, and water bodies (e.g., EC2), the
footprints of source areas (for EC and the LAS) and GF-
1 pixels exhibit subpixel heterogeneity [67], [69]. This may
compromise the spatial representativeness of GF-1-derived LE
and ground measurements and thereby introduce 5%–10%
biases into the validation results. In addition, the framework
of the NRSD model affects the accuracy of estimated LE
as it does not include a modular for estimating vegetation
interception evaporation, and some errors in the determination
of four extreme reflectances (ρd,nir , ρd,red, ρw,nir, and ρw,red)
results for PSI calculations. The use of such a simplified model
for agricultural application may lead to uncertainties in LE
estimates.

C. Strengths and Limitations of the NRSD Model

Compared to the other extended PT models, the NRSD
model offers three significant benefits. First, it improves model
operability for estimating agricultural field LE because it only

requires the reflectance of the NIR and red bands to calculate
PT coefficients and thus does not require the use of SM data.
Currently, reliable SM data sets necessary for optimizing PT
coefficients in many models are not available at finer scales
[17], [85]. Second, the model provides an estimation of total
LE partitioned to the vegetation canopy (LEc) and soil (LEs)
though we did not validate LEc and LEs due to a lack of
sufficient auxiliary data. PSI in the NRSD model serves as an
alternative LEs estimation tool for satellites without thermal
LST data, and PVI saturates less in dense vegetation cover
than NDVI, which can offer a physical characterization of LEc.
Finally, the NRSD model is robust and reliable when compared
to ground measurements and other extended PT models.

Similar to the other triangular or trapezoidal methods,
the NRSD model has three distinct limitations. First, it ignores
vegetation interception loss, which accounts for 8%–40%
of annual gross precipitation [98] and which may result in
considerable LE underestimations for humid environments.
The satellite-based Gash model [98], which replaces canopy
interception with the interception of vegetation and considers
subpixel heterogeneity based on a Poisson distribution function
for the LAI value of each pixel, can be applied to accurately
estimate vegetation interception loss, which will be pursued
in the ongoing work. Second, the model employs subjectivity
in determining soil line and bare soil extremes in identifying
ρd,nir , ρd,red, ρw,nir, and ρw,red. As the reflectance of the
NIR and red bands varies greatly with complex land surface
conditions, we visually inspected NIR–red spectral spaces to
extract soil line and bare soil extremes, though this may still
lead to approximately 10% errors in LE estimates. Finally,
the NRSD model may not be applied to areas without a
full range of land surface types and conditions, as a triangle
of NIR–red spectral space is not present, constraining the
calculation of PSI and PVI. Further efforts should focus on the
development of surface property reference tables to improve
the performance of the NRSD model.

VI. CONCLUSION

We propose an NRSD model by combining PVI and PSI
values from Chinese GF-1 data to calculate PT parameters
(�) in estimating daily terrestrial LE. In the NRSD model,
PVI characterizes vegetation vigor to determine vegetation
transpiration, whereas PSI reflects surface SM controlling soil
evaporation, especially when using the Chinese GF-1 satellite.
Validations conducted at two EC sites and one LAS station
in the Huailai agricultural region of China and 55 scenes
of Chinese GF-1 WFV data illustrate that the NRSD model
performed well. Overall, the R2 (99% confidence) of the esti-
mated versus ground-measured daily LE is 0.77 and 0.79 and
the RMSE is 17.9 and 21.5 W/m2 for sites EC1 and EC2,
respectively. The site-calibrated statistics are improved by
0.14–0.25 for R2 and decreased by 4.2–8.3 W/m2 for RMSE
as compared to the commonly used universal PT-JPL model.
For the LAS site, the NRSD model can account for 84% of
LE variability and that the RMSE is 19.2 W/m2, whereas the
PT-JPL model can only explain 74% of LE variability and
the RMSE is more than 24 W/m2. This study thus provides
an alternative model for estimating regional LE and describes
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modes high spatial resolution LEs estimation from NIR–red
spectral spaces for areas lacking thermal satellite data.

APPENDIX: Rs ESTIMATION

Instantaneous surface incident shortwave radiation (Rsi) is
the principal energy source for Rn estimation and can be
calculated as follows using the solar constant (S0, 1367 W/m2),
relative Earth–Sun distance (de), solar incidence angle (θ), and
broadband atmospheric transmissivity (τb):

Rsi = S0 cos θτb

d2
e

(A1)

where Rsi values estimated have been validated to be at least
as accurate as Rsi values measured by automated weather
station [31], whereas τb is calculated based on a general
function given by the ASCE-EWRI, which has been described
elsewhere [31], [35]. Daily surface incident shortwave radia-
tion (Rs) is calculated using a sinusoidal curve interpolation
method based on the sinusoidal curve of the variation in solar
altitude over the course of a day.
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