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A B S T R A C T   

Accurate and timely crop mapping is essential for global food security assessments; however, conventional crop 
mapping models are usually applicable to specific spatial or temporal scales, i.e. “one-time, one-place” model. 
Moreover, the extensive application of a trained model to other regions is challenging when sufficient ground- 
truth samples used for training process are unavailable. This study exploited Cropland Data Layer (CDL) and 
Landsat data for Arkansas, United States (US), to train a U-Net model and then extensively tested the general
ization ability of the model in the Corn Belt and California in the US, and even further tested in Liaoning, China, 
on a transcontinental scale. Two temporal images were generated by compositing the median values of images 
obtained during two crop growing time windows representing the sowing (from March to May) and vigorous 
growth periods (from June to August). In order to ensure the consistency of the data distribution between the 
target areas (testing areas) and the training area, we shifted the time windows of the target areas to match that of 
the training area following the phenological matching principle. Then we can composite the target data (testing 
data) according to the time windows matched in the target areas. The results showed a satisfactory accuracy. The 
average optimal Overall Accuracy of crop mapping in all the target areas exceeded 87%. The average optimal F1- 
score of corn and rice was 0.79. Finally, we compared the generalization performance of U-Net and Random 
Forest (RF) classifiers. The results showed that U-Net performed better in all the target areas in the US while RF 
performed better in target areas where the plots were smaller. The procedure and strategy developed will 
facilitate the realization of high-performance and automated global model transfer.   

1. Introduction 

Accurate and timely global crop mapping is essential for food secu
rity assessments (Wang et al., 2019a,b). With increases in available 
satellite remote sensing data, the use of remote sensing data combined 
with machine learning algorithms has become a mainstream strategy for 
the large-scale crop mapping paradigm (Dong et al., 2016; Azzari and 
Lobell, 2017; Cai et al., 2018; Jin et al., 2019; Johnson, 2019; You and 
Dong, 2020). Most conventional supervised classification methods rely 
on subjective manual feature selection, such as vegetation index calcu
lation and spatial characteristic extraction. However, these features are 
not necessarily suitable for distinguishing ground objects and may be 
difficult to generalize (Zhong et al., 2019). In the past decade, deep 

learning has evolved rapidly by big data and powerful parallel 
computing. The deep learning model can automatically learn various 
representative features from training data without manually designing 
features (LeCun et al., 2015). Convolutional neural networks (CNNs) are 
one of the most popular network architectures in the field of deep 
learning (Li et al., 2019). With the ability to automatically learn 
multilevel representative deep features, CNNs have a strong general
ization performance and have been widely used for object detection and 
semantic segmentation tasks in remote sensing images (Ding et al., 
2018; Li et al., 2019; Martins et al., 2020; Qi et al., 2020; Segal- 
Rozenhaimer et al., 2020; Zhong et al., 2020). 

Deep learning models need to be driven by a large number of training 
samples (Zhong et al., 2019). The acquisition of ground-truth samples 

* Corresponding author at: State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China. 
E-mail address: zhangjs@bnu.edu.cn (J. Zhang).   

1 Present address: Beijing Normal University No. 19, XinJieKouWai St., HaiDian District, Beijing 100,875, China. 

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2021.102451 
Received 4 May 2021; Received in revised form 5 July 2021; Accepted 15 July 2021   

mailto:zhangjs@bnu.edu.cn
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2021.102451
https://doi.org/10.1016/j.jag.2021.102451
https://doi.org/10.1016/j.jag.2021.102451
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2021.102451&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102451

2

for model training is time-consuming and laborious, and some areas 
cannot be accessed due to various factors, including political or natural 
factors (Song et al., 2017; Xu et al., 2020). As such, crop classification 
models with robust spatiotemporal generalization performance are 
desired. These models can be trained in areas with sufficient and reliable 
samples and then applied to areas where samples are scarce or difficult 
to obtain. A number of studies have attempted to exploit the crop- 
specific land cover maps as ground-truth data for model training and 
spatial transfer experiments. Some studies have proved that Cropland 
Data Layer (CDL) was reliable as ground-truth for crop mapping (Cai 
et al., 2018; Wang et al., 2019a,b; Zhong et al., 2019; Hao et al., 2020). 
The CDL is published every year by the United States Department of 
Agriculture (USDA) and provides high-precision spatial distribution in
formation for noncrop types and more than one hundred crop types, 
including several major crops, i.e., corn, soybean and rice. It has a 

spatial resolution of 30 m since 2008. The CDL is currently the most 
accurate national crop type map that can be accessed and downloaded 
freely (Cai et al., 2018). It has high overall accuracies for major crop 
types, especially corn and soybeans with an accuracy of over 95%, thus 
providing high reliability (Boryan et al., 2011). 

Existing studies on model training and generalization based on CDL 
mostly adopted fixed-length time series data. Xu et al. (2020) applied 
CDL data as ground-truth to perform spatial and temporal transfer ex
periments in several subregions of the US Corn Belt and used a Long 
Short-Term Memory (LSTM)-based model and the Landsat Analysis 
Ready Data (ARD) time series product. The results showed that the 
model had a certain spatiotemporal transferable ability but presented a 
significant drop in performance in the case of missing data; moreover, 
the proposed method does not consider changes in crop growth periods 
in different regions. These two limitations in their study could hinder the 

Fig. 1. Locations of the study areas. The training area is in Arkansas, US, and includes 6 grids with a size of 90 km × 90 km. The target areas consist of 9 grids with a 
size of 90 km × 90 km, of which T1 to T7 are located in the US (a) and T8 to T9 are located in Liaoning, China (b). 
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application of the proposed model in large-scale regions, where the crop 
growth period changes significantly due to various factors, including 
differences in latitude, and sufficient time series data may be difficult to 
obtain for all areas. 

The critical periods of crop growth are valuable for crop identifica
tion. The characteristics of one crop in these critical periods are specific 
and significantly different from those of other crops (Xin et al., 2002; 
Dong et al., 2015; Hao et al., 2018), which represents the basis of many 
remote sensing efforts for crop classification. For example, previous 
studies found that paddy rice can be efficiently identified during the 
irrigation period (Dong et al., 2016). You and Dong (2020) combined 
Sentinel-1 and Sentinel-2 data to explore the earliest recognizable date 
of crops and found that corn and soybeans can be distinguished at the 
heading/flowering stage. Kirkegaard et al. (2018) found that the flow
ering or anthesis period was a key period for yield information of oil seed 
rape. Even if the same crop is distributed in different areas around the 
world, its phenological period will remain stable and measurable (Hao 
et al., 2020), which lays the foundation for determining the key period 
of remote sensing images for crop classification. It is worth noting that 
these critical periods do not necessarily have the same day of year (DOY) 
across different areas. In large-scale areas, due to differences in crop 
varieties, topographic features, soil conditions, climatic conditions, and 
farming practices, growth patterns could vary for the same crop and 
could be similar for different crops. Therefore, crop confusion easily 
occurs when crop models are transferred in large-scale areas (Lobell and 
Azzari, 2017). 

There are currently two methods of solving the above problem. The 
first focuses on modifying the classifier to improve the transfer perfor
mance of a model in local areas (Diakogiannis et al., 2020; Xu et al., 
2020; Zhang et al., 2020). However, according to No-Free-Lunch The
orem, finding a universal classifier is difficult (Ho and Pepyne, 2002) 
because the distribution of features between the training area and target 
area is rarely consistent. These modified classifiers are usually targeted 
at a specific region or specific date (Zhong et al., 2014; Dong et al., 
2016), and their performances in other regions of the world have not 
been well evaluated (Zhang et al., 2019a,b,c). The second is to use 
training samples in multiple years (Konduri et al., 2020) or increase the 
training sample volume in the target areas (Hamrouni et al., 2021). 
However, samples from different years or different regions are often 
difficult to be obtained. 

It is worth noting that few studies have focused on the problems that 
the generalization ability of crop classification models is limited by the 
inconsistency between the target data and the training data caused by 
changes in crop phenology. In this study, the existing methods to 
improve the model generalization ability by modifying classifiers or 
increasing training sample volume were abandoned. Instead, we 
fundamentally solved the inconsistency between the target data and the 
training data due to changes in crop phenology by adjusting the distri
bution of target data, so as to improve the generalization ability of the 
model in a novel way. The proposed method is conducive to the glob
alization of crop classification models. Two objectives of this study are 
as follows. 

1. Propose an image selection strategy to train a deep learning classi
fication model with CDL data from the US. The model was then 
applied to the Corn Belt and California in the US and Liaoning in 
China, and the applicability of the model was analyzed.  

2. Analyze the impacts of the time span of image selection on the 
model’s transferability performance and develop a principle for 
image determination in the model application. 

2. Data and methods 

2.1. Study areas 

In this study, we focused on corn and rice, which are commonly 

planted in China and the US. We selected Arkansas, US, where both corn 
and rice are grown, as the training area. Some other areas where corn 
and rice are grown were selected as test areas, including the Corn Belt 
and California in the US and Liaoning in China. We tested the general
ization performance of the model in these regions with completely 
different climate characteristics (Fig. 1). Table 1 shows the sowing and 
harvesting dates of crops in these areas. 

Training area: Arkansas is located in the south-central US and has a 
humid subtropical climate. As the largest rice-producing state, rice 
production in Arkansas accounts for more than 40% of the total rice 
production in the US (Carroll et al., 2020). Most of the rice is planted 
through direct seeds and delayed floods. In 2016, Arkansas’ corn planted 
area was 760,000 acres. 

Target area 1: The Corn Belt is located in the midwestern US and 
represents the main area for the production of corn and soybean (Zhang 
et al., 2019a,b,c). This region has a humid continental climate with hot 
summers and cold winters. In this area, rain is the main water source for 
upland crops, such as corn and soybeans, planted in a single season with 
a corn-soybean rotation pattern. The rest of the land cover is dominated 
by nonarable land. 

Target area 2: California is the second largest rice-producing state in 
the US, and most rice in this region is grown in the Sacramento Valley 
(Wang et al., 2019a,b). The climate in this area is Mediterranean and 
characterized by low precipitation, low humidity and long sunshine 
duration. Due to the lack of precipitation during the crop growth period, 
manual irrigation is required to ensure normal crop growth. Rice 
planting in this area involves sowing pregerminated rice seeds into still 
water by plane (Brodt et al., 2014). 

Target area 3: Liaoning Province, which is located in Northeast 
China, is one of the country’s most important corn bases. The corn and 
rice acreages are the first and second largest in the province, respec
tively. The region is in the transition zone between semihumid and 
semiarid climates. Corn in this area is irrigated by rainwater and planted 
in a single season. The rice is artificially irrigated starting in the sowing 
period. 

The model trained using samples from Arkansas will be transferred to 
the Corn Belt and California in the US and Liaoning in China for corn and 
rice mapping to test its spatial generalization performance. Six grids 
with a size of 90 × 90 km covering rice- and corn-growing areas in 

Table 1 
Crop phenological information in different study areas.  

Type Region Dominated 
crop types 

Selected 
crop 
type 

Planting 
date 

Harvest 
date 

Training 
area 

Arkansas Rice, 
soybeans, 
corn and 
cotton 

Rice Last week 
of March 
to early 
June 

Mid- 
August to 
the end of 
October or 
early 
November 

Corn Early 
March to 
the end of 
March 

August and 
September 

Target 
area 

Corn belt Soybeans 
and corn 

Corn Start in 
late April 
to May 

September 
to early 
December 

The 
Sacramento 
Valley 

Rice, 
almonds, 
walnuts, 
plums and 
peaches 

Rice Around 
the 
beginning 
of May 

Late 
September 
to late 
November 

Liaoning Corn and 
rice 

Corn April to 
May 

Late 
September 
to early 
October  

Rice April to 
early June 

October  

S. Ge et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102451

4

Arkansas were selected for training data organization. Nine 90 × 90 km 
grids in the US and Liaoning marked as T1 to T9 were selected for 
testing, with T1 to T6 located in the Corn Belt, T7 located in the rice 
planting area in California, and T8 and T9 located in Liaoning. 

2.2. Data 

In this study, data preprocessing was mainly performed using the 
Google Earth Engine (GEE) (Gorelick et al., 2017). A number of studies 
have proved that CDL was reliable as ground-truth for crop mapping 
(Cai et al., 2018; Hao et al., 2020; Xu et al., 2020). Therefore, we used 
the CDL integrated in the GEE for 2018 to label the training data. Classes 
other than corn and rice were labeled as others. To produce a similar 
detailed crop map as the CDL, the Landsat 8 Top of Atmosphere (TOA) 
dataset with a spatial resolution of 30 m, which was the same as the CDL 
dataset, was used. We chose the TOA for two reasons: atmospheric 
correction is not a prerequisite for remote sensing image classification 
(Song et al., 2001; d’Andrimont et al., 2020) and the Surface Reflectance 
(SR) dataset processed using the GEE includes less data compared with 
the TOA dataset (Teluguntla et al., 2018) and thus would result in 
incomplete coverage of the study area. 

The removal of clouds and associated shadows is a necessary step for 
data preprocessing. According to the quality assessment band of Landsat 
data, pixels with high confidence for snow, cirrus clouds, cloud shadows 
and clouds have been removed (Roy et al., 2014). Six bands commonly 
used in crop mapping, namely, Blue, Green, Red, Near Infrared (NIR), 
Shortwave Infrared 1 (SWIR-1) and Shortwave Infrared 2 (SWIR-2) were 
selected for crop mapping (Cai et al., 2018; Ajadi et al., 2021). 

We used two images composited during two time windows repre
senting the sowing period and the vigorous growth period for crop 
mapping. The composition of clear-sky images per period was conducted 

following the principle of the median image composition, which has 
been widely used in large-scale crop mapping (Jin et al., 2019; Johnson, 
2019; You and Dong, 2020). This study considered the sowing dates of 
corn and rice in Arkansas and composited the images on these dates 
using the median composition process to obtain the sowing period 
image. An analysis of the crop phenology showed that a time window of 
64 days could completely cover the sowing period in the representative 
study areas (Johnson, 2019). Hence, the time window selected for the 
sowing period was DOY 80–144 in Arkansas. 

In this paper, we assumed that the images obtained in the training 
and target areas presented consistent phenological stage so that the 
model could be effectively applied to target areas. We combined the CDL 
data in T1-T7 and the ground survey data in T8-T9 to obtain the DOY 
when Normalized Difference Vegetation Index (NDVI) for the target 
pixels of corn and rice reached the maximum value (Fig. 2). Since 
vigorous growth tends to last for a period, the 64-day period after the 
maximum number of corn pixels in Arkansas reached the highest NDVI 
value (DOY 180) was considered the period of growth in full bloom 
(DOY 180–244). Rice and soybeans in Arkansas also reached the 
vigorous growth period within this time period (Fig. 2). In this time 
period, the vigorous growth period image was composited through 
median composition. Finally, we used a total of 12 bands in the two 
images (the sowing period image and the vigorous growth period image) 
as model input. 

2.3. Methods 

To address the problems regarding phenological variation across 
large areas faced by model transfer in different regions, this study pro
posed a strategy for filtering images in different target regions and 
explored the feasibility of extensively generalizing the classification 

Fig. 2. Percentage of crop pixels that reached the maximum NDVI value on a certain DOY in the study areas. Colored bars indicate representative crop types of corn, 
rice and soybeans. 
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model to other regions. For each crop, we extracted images for the target 
area and the training area so that the crop in the images were in the same 
critical growing period, which can address the spectral variability of a 
crop in different regions. 

In this study, CDL data was used as ground-truth label for the two 
Landsat images composited in the sowing and vigorous growth periods 
in Arkansas and for model training. The model was then transferred to 
several target areas (T1-T9). In each target area, to analyze the impact of 
different time window selections during the sowing period and vigorous 
growth period on the performance of model transfer, the time windows 
during these two periods slid during the crop growth period. Images in 
target areas were generated by compositing the median values of images 
obtained during these time windows. The accuracy assessment was 
carried out by comparing the CDL in T1-T7 and the ground-truth data in 
T8-T9 with the model transfer results. To analyze the impact of 
phenological variations on model transfer performance in different re
gions, we used three images composited during three consecutive pe
riods, which basically covered the growth period of the crops, for model 
training in the training area and then used images on the corresponding 
dates for model transfer in the target areas. Finally, the Random Forest 
(RF) classifier as a conventional classifier was compared with the U-Net 
model. Fig. 3 shows the flowchart in this study to briefly demonstrate 
the process. 

2.3.1. Time window filtering for target regions 
We analyzed the impact of changes in time windows during the 

sowing and vigorous growth periods in target areas on the performance 
of model transfer. Considering that the temporal resolution of Landsat 
data is 16 days, we shifted the time windows during the two periods 
forward and backward with a step of 16 days based on the time windows 
for the training area (DOY 80–144 and DOY 180–244) during the crop 
growing periods in target areas (Fig. 3(b)). A total of 3 time windows 

Fig. 3. Flow chart of this study includes the following: (a) data processing; (b) time window selection during the sowing and vigorous growth periods; and (c) image 
composition process during three consecutive periods. 

Table 2 
Time window information for image composition in the study areas. The 
training data were composited through a fixed time window. In the target areas, 
3 and 6 time windows were obtained by shifting the time windows during the 
sowing and vigorous growth periods forward and backward with a step of 16 
days, respectively.  

Type Region Selected crop 
type 

First phase 
(DOY) 

Second phase 
(DOY) 

Training 
area 

Arkansas Rice and corn 80–144 180–244 

Target area Corn belt Corn 64–128 164–228 
180–244 

Sacramento 
Valley 

Rice 80–144 196–260 
212–276 

Liaoning Rice and corn 96–160 228–292 
244–308  
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during the sowing period (DOY 64–128, DOY 80–144 and DOY 96–160) 
and 6 time windows during the vigorous growth period (DOY 164–228, 
DOY 180–244, DOY 196–260, DOY 212–276, DOY 228–292 and DOY 
244–308) were obtained. A total of 18 sowing-vigorous growth combi
nations can be generated to represent the phenological variations in 
target areas. See Table 2 for the specific time windows for image se
lection in the training and target regions. 

In addition, the transfer performance of a model was analyzed when 
the training data and target data were composited on the same date to 
analyze the impact of phenological variations on model transfer per
formance in different regions. We used three images composited during 
three consecutive periods to retrain the model (Fig. 3(c)). These periods 
started on DOY 80 and ended on DOY 272, and the time windows were 
64 days. Hence, three time windows were obtained: DOY 80–144, DOY 
144–208 and DOY 208–272. Images in each time window were reduced 
to a single image following the principle of median composition. Hence, 
a total of three images were obtained. These images in Arkansas were 
used to retrain the model. The transfer performance of the retained 
model was evaluated for T1-T9 using images composited on the same 
date. 

2.3.2. Model building 
This study adopted the CNNs model for crop mapping. CNNs 

combine convolutional layers and pooling layers to directly extract 
features from the original image. It can process input data at multiple 
context levels and have strong generalization capabilities compared 
with conventional machine learning algorithms (Zhu et al., 2017; Zhang 
et al., 2020). Specifically, the CNN used in this study was based on the U- 
Net architecture, which was originally used for biomedical image seg
mentation. We chose U-Net because it could learn from very little data 
and achieve state-of-the-art results on the semantic segmentation 
benchmark data set (Ronneberger et al., 2015), which could help solve 
the problem faced by large-scale crop mapping in terms of the difficulty 
obtaining sufficient ground samples. U-Net has been widely used in 
remote sensing classification tasks (Wieland et al., 2019; Zhang et al., 
2019a,b,c; Pan et al., 2020; Wei et al., 2021). The U-Net architecture 

consists of two parts: encoder and decoder (Fig. S1). The encoder has 
four submodules, each of which contains two convolutional layers. After 
each submodule, a downsampling layer is implemented by max pool. 
The decoder contains four submodules, and the resolution of the feature 
is sequentially increased by upsampling until it is consistent with the 
resolution of the input image. The network also uses a skip connection to 
connect the upsampling result with the output of the submodule with 
the same resolution in the encoder as the input of the next submodule in 
the decoder. 

We coupled CDL and Landsat 8 data from 2018 to create a training 
and validation dataset. In Arkansas, we covered the areas where most 
rice and corn were planted through 6 grids with a size of 90 × 90 km. 
Then, the data were cropped in the grids into tiles of 256 × 256 pixels in 
size with a 25% overlap to reduce the memory requirement during the 
training process (Wieland et al., 2019). Finally, we divided the pro
cessed data into training (80%) and validation data (20%), which had 
2864 and 713 samples, respectively. 

During the model training process, we used Adam to optimize the 
update weights (Zhang et al., 2020) and set the initial learning rate to 
0.00001 and batch size to 10. We trained the model until it conver
gences. ImageNet pretrained model parameters were used to speed up 
training. We expanded the convolution filters in the first layer of U-Net 
to make them have more than 3 channels. The RGB channels of these 
filters will be initialized with pre-trained weights, while the new chan
nels will start from scratch and need to be learned. 

As one of the most popular machine learning algorithms, RF has been 
widely used in applications related to remote sensing image classifica
tion (Teluguntla et al., 2018; Wang et al., 2019a,b; Wieland et al., 2019; 
You et al., 2021). It was adopted for comparison with U-Net in this 
study. We used the grid-search method based on 5-fold cross-validation 
using training data to find the optimal hyperparameters of the RF clas
sifier from the given parameter set (Hamrouni et al., 2021), including 
the number of trees (n_estimator), the maximum depth of the tree 
(max_depth) and the maximum number of features considered during 
division (max_features). 

Fig. 4. Distribution of spectral reflectance in each band of Landsat data composited in the training area during the sowing period (first phase) and the vigorous 
growth period (second phase). C, R, S and O represent corn, rice, soybeans and cotton, respectively. 
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2.3.3. Accuracy assessment 
A model trained and validated in Arkansas was used to classify the 

data in each target area (T1-T9) for 18 combinations. Overall Accuracy, 
Producer’s Accuracy, User’s Accuracy and F1-score (F1) were used to 
evaluate the accuracy of the model transfer results for each area. 

Overall Accuracy =

∑k
i=1Xii

N
(1)  

Producer’s Accuracy (PA) =
Xii

Ni
(2)  

User’s Accuracy (UA) =
Xii

ni
(3)  

F1 = 2 ×
PA × UA
PA + UA

(4)  

where Xii represents the number of pixels of class i that matches the 
spatial position in the model transfer result and the ground-truth data. k 

represents the total number of class. N represents the total number of 
pixels in ground-truth data. Ni represents the total number of pixels of 
class i in ground-truth data.ni represents the total number of pixels of 
class i in the result by the model. 

3. Results 

3.1. Characteristics of training data 

The reflectance of all training data is shown in Fig. 4. As rice was 
sown with delayed flooding in Arkansas, its reflectance during the 
sowing period was similar to that of corn, soybeans and cotton for all 
bands. However, the features in this period were helpful for dis
tinguishing fallow land from other vegetation types. In the vigorous 
growth period image composited on DOY 180–244, corn, rice and soy
beans showed diverse reflectance in the Shortwave Infrared (SWIR) 
band. The spectral characteristics of cotton and soybeans are similar. 
This finding indicated that the period of vigorous growth was a key 
phase for distinguishing corn and rice. Diagnostic features for these 
three crops could be extracted from the SWIR band in this period. 

3.2. Impacts of time window variations on model transferability 

The model trained in Arkansas was used to infer the data composited 
by 18 different time window combinations in individual target areas. 
The Overall Accuracy, Producer’s Accuracy, User’s Accuracy and F1-score 
analysis of the classification results is shown in Table A1 and 
Figs. S2–S5. In each target area, there was a set of determined time 
windows during the sowing and vigorous growth periods that made the 
model achieve the best performance. The average optimal Overall Ac
curacy was 87.64%, of which T8 contributed the lowest of 74.13%. 
Other target areas except T8 were higher than 82%, and T7 had the 
highest of 96.32%. The average optimal F1-score of corn and rice was 
0.79, of which T8 contributed the lowest of 0.54. Other target areas 

Table 3 
Composition time windows of the image in the target area when the model 
trained in Arkansas achieved optimal performance.  

Region Selected crop type Optimal time window for the best Overall Accuracy 

First phase (DOY) Second phase (DOY) 

T1 Corn 96–160 164–228 
T2 Corn 96–160 196–260 
T3 Corn 96–160 196–260 
T4 Corn 96–160 196–260 
T5 Corn 96–160 180–244 
T6 Corn 64–128 180–244 

Rice 
T7 Rice 64–128 212–276 
T8 Corn 80–144 180–244 
T9 Rice 96–160 212–276  

Table 4 
Detailed accuracy indices of the U-Net and RF results: Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA) and F1-score (F1). “U-Net2” and “RF” were 
trained by the same dataset and tested by the images composited in the two optimal time windows in each target area. “U-Net3” was trained and tested by three images 
obtained during three consecutive periods on the same date in different regions.  

Classifier   Corn Rice Other 

Region OA (%) F1 PA (%) UA (%) F1 PA (%) UA (%) F1 PA (%) UA (%) 

U-Net2 T1  84.22  0.79  81.81  76.39     0.90  96.31  85.24 
T2  92.67  0.80  74.85  85.67     0.96  96.97  94.11 
T3  82.84  0.78  72.78  83.65     0.86  89.95  82.39 
T4  89.73  0.80  79.52  79.73     0.93  93.12  93.24 
T5  89.70  0.83  77.61  88.77     0.93  95.38  90.08 
T6  93.67  0.75  71.45  79.64  0.85  87.13  83.65  0.96  97.02  95.87 
T7  96.32     0.92  90.49  94.22  0.98  98.19  96.99 
T8  74.13  0.53  87.83  38.31     0.82  71.36  96.58 
T9  85.54     0.85  93.89  78.42  0.89  82.08  97.23  

U-Net3 T1  78.00  0.04  1.99  81.17     0.93  99.68  87.43 
T2  80.56  0.02  0.83  87.13     0.91  99.80  83.54 
T3  59.88  0.09  4.58  76.68     0.88  98.93  79.84 
T4  77.72  0.22  12.71  86.76     0.91  99.31  84.13 
T5  79.07  0.56  40.82  87.36     0.93  97.02  89.55 
T6  94.60  0.92  89.18  95.31  0.97  97.74  96.31  0.96  96.70  95.18 
T7  94.31     0.91  91.33  90.88  0.95  95.03  95.25 
T8  83.15  0.58  88.61  43.21     0.86  77.73  97.13 
T9  80.05     0.84  94.87  75.94  0.77  73.91  79.34  

RF T1  80.32  0.22  12.34  92.45     0.89  99.71  79.95 
T2  91.35  0.72  57.63  96.50     0.95  99.49  90.68 
T3  61.94  0.17  9.11  89.42     0.75  99.23  60.73 
T4  86.50  0.66  50.89  91.91     0.92  98.33  85.81 
T5  76.95  0.45  29.46  94.85     0.85  99.24  74.99 
T6  90.07  0.43  28.30  89.44  0.80  78.01  81.00  0.95  99.12  90.52 
T7  92.30     0.82  71.92  95.33  0.95  98.84  91.64 
T8  85.13  0.79  71.47  87.79     0.91  93.56  89.10 
T9  86.01     0.86  92.34  80.75  0.90  83.38  96.65  
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except T8 were higher than 0.76, and T7 had the highest of 0.92. At T4, 
when the time window during the sowing period was DOY 64–128, the 
composited image only covered a small portion of the corn planting 
area, resulting in low Overall Accuracy and F1-score. 

Since the Overall Accuracy directly indicated the ratio of correctly 
classified pixels to the total number of pixels, the time windows with the 
best Overall Accuracy in each target area were determined as the optimal 
windows. The optimal time windows for T1-T9 are shown in Table 3. 
With the optimal time windows, the classification results for each region 
are shown in Fig. 5. The spatial distribution of the corresponding 

ground-truth labels is also shown. The classification results for most 
areas were visually accurate. There was a “salt-and-pepper effect” in 
CDL corresponding to T1, and corn showed a fragmented distribution. 
The use of U-Net led to fewer isolated pixels and more continuous and 
homogeneous crop type in each plot. This is because U-Net can 
comprehensively consider spatial information at different scales through 
sequence operations, including convolutional operations and down
sampling operations, and learn features directly from data, which can 
solve the above problem (Wieland et al., 2019). T8 was located in 
Liaoning, China, and compared with T1-T7, it had smaller plots and a 

Fig. 5. Comparison between the U-Net and RF transfer results at different scales. These two classifiers were tested by the data composited by the optimal time 
windows in target areas. The ground-truth labels are shown on the right. 
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more complex landscape. The classification results of this study in T8 
had a certain degree of misclassification relative to the ground-truth 
data. Its optimal Overall Accuracy only reached 74.13%. 

3.3. Two vs three consecutive periods 

Table 4 and Fig. S6 shows a comparison of the model performance 
obtained using two optimal time windows during the sowing and 

vigorous growth periods and three consecutive periods with strictly 
corresponding dates in different areas. Except for T6 and T8, the model 
trained with two images composited during two periods had better 
performance than the model trained with three images composited 
during three consecutive periods, and the Overall Accuracy of the former 
was 6.83% higher than the latter on average. At T3, the Overall Accuracy 
of the former was 22.96% higher than that of the latter, and the accuracy 
gap was the largest among all the target areas (from 82.84% to 59.88%). 

Table 5 
The accuracy comparison between the crop map published by You et al. (2021) and our results.  

Crop maps   Corn Rice Other 

Region OA (%) F1 PA (%) UA (%) F1 PA (%) UA (%) F1 PA (%) UA (%) 

You et al. (2021) T8  87.76  0.87  89.67  84.85     0.90  86.36  94.18 
T9  88.04     0.87  88.45  84.78  0.92  87.48  95.96  

Our results by RF T8  85.13  0.79  71.47  87.79     0.91  93.56  89.10 
T9  86.01     0.86  92.34  80.75  0.90  83.38  96.65  

Fig. 6. Comparison between the crop map published by You et al. (2021) and our results. On the right side of the figure, we put the former on top of the latter to 
highlight the difference between them. 
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At T6 and T8, the Overall Accuracy of the latter reached 94.60% and 
83.15%, respectively, which were improved by 0.93% and 9.02% 
compared with the former, respectively. Except for T6 and T8, the crops’ 
F1-score of the former were also higher than that of the latter (Table 4). 

This finding indicated that the crop phenology in the training area 
and the target area were often inconsistent; therefore, the same crops 
showed different spectral characteristics on the images on the same date 
in different regions. Since the length of the growth cycle of the same crop 
in different regions may be different, the use of data composited during 
three consecutive periods or time series data cannot make the target 
data and the training data equally distributed. 

3.4. U-Net vs random forest 

U-Net and RF are two different machine learning algorithms. Here, 
we attempted to verify their individual advantages (Table 4 and Fig. S7). 
The Overall Accuracy and F1-score by U-Net were higher than that of RF 
in most target areas except for T8 and T9. The RF-derived results had 
more isolated pixels (Fig. 5), and the Producer’s Accuracy of corn was low 
(9.11–71.47%), indicating that corn had obvious omissions. RF or other 
classification methods based on pixels as a unit made predictions only 
according to the spectral feature of a single pixel, resulting in a “salt- 
and-pepper effect” (Diakogiannis et al., 2020). The Producer’s Accuracy 
of rice varied from 71.92% to 92.34%, which was higher than that of 
corn, indicating that the omissions in corn were more obvious than those 
in rice. This also showed that by selecting the optimal time window to 
composite images in sowing and vigorous growth periods, rice in 
different regions had more similar characteristics than corn in the 
selected 12 bands of the two images. Therefore, the RF classifier could 
also achieve satisfactory transfer performance in different rice growing 
areas. For corn, the CNN had to learn deeper features from the original 
12 spectral bands to support high-precision recognition of corn in 
different regions. 

In T9, RF was able to better identify roads while U-Net classified 
some roads as rice (Fig. 5), resulting in a slightly lower User’s Accuracy of 
rice for U-Net (the former was 80.75%, and the latter was 78.42%). In 
T8, where the parcels were relatively fragmented, the User’s Accuracy of 
corn in the U-Net results dropped to 38.31%, which was the lowest 
among the target areas where corn was planted. This finding indicated 
that there were clear commissions of corn in the U-Net results in T8. It is 
worth noting that the plot size in T8 was significantly smaller than that 
in T1-T7 located in the US. In T8, the average plot size was approxi
mately 200 m, but in T1 to T7, it was approximately 1000 m. Although 
the plots in T9 had an average size of 600 m, which were larger than 
those in T8, their shapes were obviously different from those in T1-T7. 
Some studies on U-Net also showed that U-Net performance was 
significantly decreased when the shape, size or structure of the target 
data were changed relative to the training data (Ibtehaz and Rahman, 
2020). Therefore, although this study used the moving the time window 
method to ensure that the spectral values of the target data maintained 
the same distribution as the training data, differences in the shape and 
size of the objects in different target areas still existed. These differences 
were the main reasons for the limited generalization performance of U- 
Net. 

4. Discussion 

4.1. Comparison with current crop type maps 

You et al. (2021) published the first 10-m maps of major crops, 
including rice, corn and soybean in Northeast China for 2017–2019. The 
crop maps were generated by time series Sentinel-2 data, field survey 
samples in Northeast China and RF classifiers. It was reported that the 
Overall Accuracy of its crop map for 2018 was 0.81. We compared its 
crop map for 2018 with our results by RF in T8 and T9 in Northeast 
China. The accuracy of its map was analyzed based on the ground-truth 

in T8 and T9 in this study. As shown in Table 5, the crop map published 
by You et al. (2021) exhibited slightly higher Overall Accuracies in T8 
and T9 than our results. The Overall Accuracy of the former was 2% 
higher than the latter on average. The corn’s F1-score of the former in T8 
was 0.08 higher than that of the latter (from 0.87 to 0.79), while the 
difference in rice was small (from 0.87 to 0.86). 

The visual differences between the two crop maps are shown in 
Fig. 6. Our results produced similar distribution patterns with the crop 
map published by You et al. (2021), but obvious omissions in corn at the 
edge of plots in T8. This led to low Producer’s Accuracy (71.47%) of corn 
in our results. T8 was located in a mountainous area and the plots in it 
were small. Our crop map was generated by Landsat data with a spatial 
resolution of 30-m, so some details at the edge of plots can’t be captured. 
The crop map published by You et al. (2021) was generated by Sentinel- 
2 data with a 10-m resolution and can capture small objects such as 
roads in T9 (Fig. 6). In the production process of this crop map, You et al. 
(2021) used 21,431 samples in 2018 in Northeast China for model 
training and testing, and their classification process was complicated, 
including the process of feature selection, RF classifiers training in each 
agro-climate region, then identifying cropland, and identifying crops 
within the range of cropland. It is worth noting that we did not use 
samples in T8 and T9 for model training. Although the accuracies of our 
results were slightly lower than the former, the results also exhibited the 
crop distribution accurately, and our classification process was more 
concise by training only one model. This showed the advantages of the 
proposed method in this study in large-scale crop mapping. 

4.2. Comparison with current crop mapping methods based on transfer 
learning 

Some approaches based on transfer learning have recently been 
proposed to improve the spatial generalization ability of crop classifi
cation models. Some of these methods need to use samples in the target 
area to fine-tune the pre-trained model (Nowakowski et al., 2021) or use 
the crop statistics in the target area to correct the classifier (Kluger et al., 
2021) to help the model achieve better generalization performance. 
However, these methods were not suitable for target areas with limited 
crop samples or inaccurate statistics. This study started from the 
perspective of adjusting the distribution of target data according to the 
crop phenology, so that the target data can be adapted to the classifier 

Fig. 7. Reflectance distribution of each band of the images composited by 
different time windows during the vigorous growth period, taking T2 as an 
example. The distribution of training data composited during DOY 180–244 is 
shown as a comparison on the left. C and O represent corn and others, 
respectively. The red dashed line indicates the median reflectance of corn pixels 
of the training data. Bold font indicates the optimal time window for T2. 
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Table A1 
Overall Accuracy, Producer’s Accuracy, User’s Accuracy and F1-score (F1) analysis between the model results and the ground-truth. Two images composited during the 
sowing (DOY-s) and vigorous growth periods (DOY-v) were used for training and testing. Images to be tested changed along with variations in the time windows during 
the sowing and vigorous growth periods in target areas.  

Overall Accuracy (%):   

DOY-v 

Region DOY-s 164–228 180–244 196–260 212–276 228–292 244–308 

T1 64–128  82.87  81.13  79.86  63.98  66.30  70.55 
80–144  82.88  81.21  80.01  64.31  66.51  70.64 
96–160  84.22  82.67  81.28  66.00  68.75  73.30  

T2 64–128  86.78  87.85  81.11  69.34  60.75  47.54 
80–144  87.34  88.39  81.93  70.74  62.26  49.22 
96–160  90.57  92.24  92.67  89.02  84.98  81.69  

T3 64–128  70.58  80.29  81.17  81.20  73.12  63.54 
80–144  70.84  80.65  81.65  81.65  73.35  63.93 
96–160  73.43  82.17  82.84  82.67  73.80  65.41  

T4 64–128  45.05  46.44  46.83  46.18  37.38  31.53 
80–144  85.97  88.69  89.12  87.82  71.94  60.55 
96–160  87.07  89.43  89.73  88.37  71.73  61.75  

T5 64–128  82.38  83.64  88.14  74.84  69.45  64.69 
80–144  84.54  85.70  88.94  74.39  69.12  64.77 
96–160  88.68  89.70  89.31  70.98  66.20  62.85  

T6 64–128  92.90  93.67  88.27  83.28  72.22  68.50 
80–144  93.19  93.54  86.52  79.45  65.33  60.55 
96–160  93.22  93.55  86.48  79.25  64.92  59.43  

T7 64–128  90.97  93.74  95.74  96.32  94.71  89.18 
80–144  91.07  93.78  95.69  96.22  94.63  89.20 
96–160  91.35  94.49  95.74  95.89  94.17  89.07  

T8 64–128  73.04  73.99  70.17  68.52  61.44  60.18 
80–144  73.01  74.07  70.30  68.74  61.77  60.54 
96–160  73.95  74.13  70.49  69.76  64.54  64.18  

T9 64–128  82.93  83.84  83.46  85.40  81.51  70.84 
80–144  82.89  83.79  83.43  85.37  81.51  70.81 
96–160  83.03  83.99  83.64  85.54  81.33  70.68  

Producer’s Accuracy (%):    

DOY-v 

Region Crop type DOY-s 164–228 180–244 196–260 212–276 228–292 244–308 

T1 Corn 64–128  75.86  42.07  70.50  53.22  48.07  28.32 
80–144  78.90  41.97  70.43  53.19  48.04  28.19 
96–160  81.81  51.69  75.09  55.37  52.15  31.88  

T2 Corn 64–128  52.06  68.95  80.70  93.09  90.43  78.11 
80–144  52.79  68.93  80.01  92.83  90.14  77.66 
96–160  57.71  67.99  74.85  89.16  85.94  72.98  

T3 Corn 64–128  35.86  63.17  67.36  71.06  78.66  57.27 
80–144  36.26  64.10  68.64  72.22  80.08  58.01 
96–160  42.55  69.32  72.78  74.91  82.39  58.99  

T4 Corn 64–128  20.36  31.52  37.02  40.28  43.16  41.00 
80–144  53.20  71.37  78.45  85.55  89.69  87.08 
96–160  56.89  73.27  79.52  86.76  90.15  86.73  

T5 Corn 64–128  50.10  54.60  75.06  67.94  45.86  30.47 
80–144  58.63  63.42  81.16  73.05  54.05  38.80 
96–160  73.17  77.61  87.05  72.79  61.34  42.90  

T6 Corn 64–128  66.74  71.45  54.03  48.72  41.09  30.20 
80–144  73.07  77.85  63.48  60.10  55.15  43.28 
96–160  74.06  78.94  64.74  61.13  56.54  44.44 

Rice 64–128  66.49  87.13  52.96  34.33  12.05  1.69 
80–144  69.36  87.42  55.93  39.28  18.68  3.80 
96–160  69.35  87.41  55.93  39.28  18.74  3.82  

T7 Rice 64–128  82.37  88.72  90.79  90.49  81.61  57.30 
80–144  82.39  88.66  90.57  90.07  81.28  57.38 
96–160  78.53  88.13  90.02  88.56  79.22  56.82  

T8 Corn 64–128  88.32  86.42  89.87  87.62  61.98  35.86 
80–144  88.36  86.34  89.78  87.61  61.87  35.69 
96–160  89.23  87.83  90.94  88.98  62.09  34.74  

T9 Rice 64–128  95.80  95.95  96.36  93.99  65.92  22.35 

(continued on next page) 
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Table A1 (continued ) 

Producer’s Accuracy (%):    

DOY-v 

Region Crop type DOY-s 164–228 180–244 196–260 212–276 228–292 244–308 

80–144  95.73  95.80  96.29  94.02  65.95  22.32 
96–160  95.56  95.75  96.25  93.89  65.06  21.93  

User’s Accuracy (%):    

DOY-v 

Region Crop type DOY-s 164–228 180–244 196–260 212–276 228–292 244–308 

T1 Corn 64–128  77.90  60.80  53.50  31.53  32.48  31.71 
80–144  77.93  61.15  53.78  31.81  32.69  31.80 
96–160  76.39  63.43  55.81  33.77  35.93  37.93  

T2 Corn 64–128  72.19  68.70  50.91  38.17  31.99  23.96 
80–144  74.69  70.67  52.32  39.32  32.86  24.54 
96–160  90.30  89.60  85.67  66.15  57.65  52.10  

T3 Corn 64–128  83.87  85.45  84.01  81.20  64.37  56.17 
80–144  84.42  85.52  84.12  81.37  64.31  56.59 
96–160  86.31  84.81  83.65  81.69  64.35  58.46  

T4 Corn 64–128  79.26  74.28  71.38  66.02  42.30  33.86 
80–144  85.26  81.26  78.57  71.51  46.81  37.54 
96–160  86.80  82.45  79.73  72.27  46.58  38.27  

T5 Corn 64–128  90.74  90.40  86.19  69.07  52.51  42.66 
80–144  89.48  88.60  83.87  66.43  51.61  44.18 
96–160  89.64  88.77  81.07  60.61  47.75  42.05  

T6 Corn 64–128  81.33  79.64  60.36  42.55  21.40  15.16 
80–144  76.80  74.78  50.25  34.44  19.43  14.58 
96–160  76.38  74.30  50.14  34.28  19.49  14.39 

Rice 64–128  75.66  83.65  85.94  85.38  79.99  69.25 
80–144  78.34  84.47  85.35  84.51  81.70  69.63 
96–160  78.90  84.53  85.32  84.36  81.39  69.63  

T7 Rice 64–128  80.88  86.02  91.68  94.22  96.11  97.06 
80–144  81.23  86.21  91.69  94.20  96.10  97.07 
96–160  84.79  89.09  92.31  94.22  96.14  97.01  

T8 Corn 64–128  37.30  38.02  34.98  33.42  24.50  17.22 
80–144  37.28  38.09  35.07  33.58  24.67  17.34 
96–160  38.27  38.31  35.36  34.55  26.45  19.07  

T9 Rice 64–128  72.20  73.88  73.01  77.92  84.79  82.56 
80–144  72.20  73.90  73.04  77.91  84.86  82.63 
96–160  72.59  74.39  73.52  78.42  85.13  82.67  

F1-score:    

DOY-v 

Region Crop type DOY-s 164–228 180–244 196–260 212–276 228–292 244–308 

T1 Corn 64–128  0.77  0.50  0.61  0.40  0.39  0.30 
80–144  0.78  0.50  0.61  0.40  0.39  0.30 
96–160  0.79  0.57  0.64  0.42  0.43  0.35  

T2 Corn 64–128  0.60  0.69  0.62  0.54  0.47  0.37 
80–144  0.62  0.70  0.63  0.55  0.48  0.37 
96–160  0.70  0.77  0.80  0.76  0.69  0.61  

T3 Corn 64–128  0.50  0.73  0.75  0.76  0.71  0.57 
80–144  0.51  0.73  0.76  0.77  0.71  0.57 
96–160  0.57  0.76  0.78  0.78  0.72  0.59  

T4 Corn 64–128  0.32  0.44  0.49  0.50  0.43  0.37 
80–144  0.66  0.76  0.79  0.78  0.62  0.52 
96–160  0.69  0.78  0.80  0.79  0.61  0.53  

T5 Corn 64–128  0.65  0.68  0.80  0.68  0.49  0.36 
80–144  0.71  0.74  0.82  0.70  0.53  0.41 
96–160  0.81  0.83  0.84  0.66  0.54  0.42  

T6 Corn 64–128  0.73  0.75  0.57  0.45  0.28  0.20 
80–144  0.75  0.76  0.56  0.44  0.29  0.22 
96–160  0.75  0.77  0.57  0.44  0.29  0.22 

Rice 64–128  0.71  0.85  0.66  0.49  0.21  0.03 
80–144  0.74  0.86  0.68  0.54  0.30  0.07 
96–160  0.74  0.86  0.68  0.54  0.30  0.07  

T7 Rice 64–128  0.82  0.87  0.91  0.92  0.88  0.72 

(continued on next page) 
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without adjusting the classifier. According to Fig. 7, the optimal window 
kept the distribution of target data similar to the training data and 
allowed the categories of the target data to be distinguished. This ensure 
that a model achieved satisfactory transfer performance in the target 
area (Zhong et al., 2019). This study did not adopt the time series data 
that was widely used in crop mapping (Zhang et al., 2012; Cai et al., 
2018; Xu et al., 2020), but used two time windows to flexibly composite 
data. This framework reduced the requirement for remote sensing im
ages and ground-truth samples, which was conducive to large-scale crop 
mapping. 

4.3. Application prospects and limitations analysis 

This research was based on freely available Landsat and CDL data for 
deep learning model training and then performed a large-scale spatial 
transfer experiment within and even across continents. By moving the 
time windows during the sowing and vigorous growth periods in 
different target areas, the average optimal Overall Accuracy and F1-score 
of the classification results in different target areas reached 87.64% and 
0.79 respectively, achieving the goal of cross-continental-scale crop 
mapping by training only one model. In future applications, in order to 
realize the global transfer of models, different data composition time 
windows need to be adopted in different regions. The determination of 
these time windows needs to consider the phenology of local target 
crops and non-target crops at the same time. In this study, we used 
Landsat 8 and CDL data with a spatial resolution of 30 m. In the future, 
remote sensing data with higher spatial and temporal resolutions, such 
as Sentinel-2, could be tested to obtain more detailed crop maps and 
time windows. 

This study aimed to adjust the data distribution in target areas to 
improve the transfer performance of a trained crop classification model. 
Compared with continuous time series data for crop mapping, the 
methods proposed in this study effectively resolved the adverse effects of 
phenological changes in the target areas on model transfer performance 
(Wang et al., 2019a,b; Hao et al., 2020; Konduri et al., 2020; Xu et al., 
2020). For example, although the rice planting practices in Arkansas 
(irrigation after sowing) and California (irrigation before sowing) were 
different, the image filtering strategy proposed in this study enabled the 
model to recognize rice in different regions with high accuracy. 

RF, as a conventional pixel-based classifier, produces “salt-and- 
pepper effect”. Although the U-Net result did not have this problem, its 
performance dropped significantly in areas with fragmented plots. In 
future research, we could try to improve the architecture of U-Net and 
test other networks, such as by integrating methods on high-level and 
low-level feature fusion (Zhang et al., 2020) to allow the model to better 
overcome the influence of changes in the shape, size and structure of the 
ground objects in different areas. 

5. Conclusions 

To address issues associated with conventional model transfer, this 

research developed a method of ensuring that the data in the target area 
and the training area are identically distributed by moving the image 
composition time window in the target areas to improve the model 
transfer performance from the perspective of adjusting the data distri
bution. In this study, we used CDL and Landsat data for Arkansas to 
composite crop sowing and vigorous growth period data to train the U- 
Net model and then transferred the model to the Corn Belt and California 
in the US and Liaoning in China for corn and rice mapping. The results 
showed that the spectral values of the same crops in different regions 
were not consistent on the same date and data from the corresponding 
date could not been applied for model transfer in large-scale areas. By 
moving the time windows in the sowing and the vigorous growth period 
in the target area, the target data and training data presented increased 
consistency in distribution to realize effective model transfer and ach
ieve the purpose of a global model. The model transfer scheme proposed 
in this paper provides an innovative concept for rapid global crop 
mapping. 
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