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A B S T R A C T   

In the context of global climate change, droughts pose a serious threat to agricultural development and food 
security. Assessing the vulnerability and risk of regions to drought is important for its prevention. In this paper, 
to understand the vulnerability of maize to drought in different regions of China and quantify its risk, 241 
prefecture-level administrative regions (including prefecture-level cities, autonomous prefectures, prefectures, 
and leagues) in the five main maize-growing regions of China are used as study area. By using a method of global 
sensitivity analysis, the extended Fourier amplitude sensitivity test (EFAST), we chose two parameters that are 
most sensitive to maize yield to calibrate the AquaCrop model. We then used it to simulate the water stress of 
maize in the study area under different irrigation scenarios as well as the corresponding production. We defined 
the drought hazard index (DHI) as the daily average of the crop water stress indicator during the growing season, 
and used it to describe the intensity of droughts. Vulnerability curves (the function of the DHI and rate of yield 
loss) of the entire growth season and various stages of growth were also formulated. These were used to 
determine the loss of maize yield under four levels of risk (return periods of 5, 10, 20, and 50 years). The results 
showed the following: 1) the vulnerability curve of maize for the entire growing season was consistent with 
logistic function, and the coefficient of determination of the equation of regression was R2 = 0.93. The rate of 
yield loss began increasing rapidly once the DHI had reached 0.2 and approached its maximum value when the 
DHI was 0.6. 2) The coefficients of determination of the results of regression in 14 scenarios, in which drought 
had occurred in different stages of growth, were between 0.28 and 0.92. Drought from the tasseling stage to the 
milk stage had the most significant negative effect on the maize yield, followed by the seventh leaf stage to the 
tasseling stage and the sowing stage to the seventh leaf stage. Drought from the milk stage to physiological 
maturity had the least negative effect on the maize yield. 3) Under all four risk levels, the DHI and the yield loss 
rate of maize in China decreased from the northwest to the southeast. The Northwest Irrigated Maize Region had 
the highest drought risk among the five maize-growing regions, followed by the North Spring Maize Region, the 
Huang-Huai-Hai Summer Maize Region, the South Hilly Maize Region, and the Southwest Mountain Maize 
Region. 4) The DHI calculated by the average method was more representative than that calculated using the 
accumulative method.   

1. Introduction 

Against the backdrop of global climate change, extreme meteoro
logical events have been observed frequently in recent years. Agricul
tural production is significantly influenced by such events because it is 
heavily dependent on climatic conditions (Rosenzweig et al., 2014; Xie 

et al., 2018). According to the Intergovernmental Panel on Climate 
Change (IPCC), and the Food and Agriculture Organization (FAO) of the 
United Nations, agriculture is among the industries most vulnerable to 
climate change (IPCC, 2014; FAO, 2017). Among the most common 
consequences of climate change (Hanson and Weltzin, 2000; Aherne 
et al., 2006; Cheng et al., 2016; Gizaw and Gan, 2017; Linares et al., 
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2017; Tietjen et al., 2017), droughts are particularly destructive because 
of their long duration and complex impacts, and pose a serious threat to 
global food security (Carrao et al., 2016; Mao et al., 2017; Shi et al., 
2018; Ahmadalipour et al., 2019). In the last few decades, droughts have 
led to the loss of 1820 million Mg of cereal crops (maize, wheat, and 
rice) worldwide (Lesk et al., 2016). Approximately two billion people 
have been affected by droughts, which have annually cost 6– 8 billion 
US dollars since 1900 (FAO, 2013). Research has had shown that the 
areas suffering extreme drought conditions will increase by 29% in the 
21st century, and the frequency and duration of droughts may also in
crease (Burke et al., 2006; Dai, 2013; Dai et al., 2018; Feng et al., 2019). 
Therefore, the accurate assessment of the risk of drought is important for 
the sustainable development of agriculture. 

In disaster science, risk is defined as a combination of the possibility 
of a specific destructive event and its negative effects. It can be described 
as the expectation of loss based on intensity of the hazard and the 
vulnerability curve/matrix (UNISDR, 2009). In research on assessing the 
risk of agricultural droughts, “negative effect” refers to crop yield loss, 
and the corresponding risk is a function of the intensity of the drought 
and the vulnerability of the crop to it (Wilhite, 2000). To assess the risk 
of drought, non-quantitative, semi-quantitative, and quantitative 
models (Shi, 2011) are used to calculate the level, grade, and value of 
such risk, respectively. Many researchers have calculated the risk of 
drought based on vulnerability (Yin et al., 2014; Jia et al., 2016; Yue 
et al., 2018; Chen et al., 2019; Chou et al., 2019; Zeng et al., 2019). 

As a measure of resistance to a hazard, vulnerability plays an 
important role in research on risk assessment. Early studies on vulner
ability assessment were mostly qualitative and descriptive (Wisner, 
2004; Birkmann, 2006). With the development of fuzzy mathematics, 
quantitative evaluation has now become common. The three most 
commonly used methods are vulnerability assessment based on histor
ical data (Dilley, 2005), indicators (Wu and Wilhite, 2004), and hazard 

loss curves (Zhu et al., 2020). 
Hazard loss curves, or vulnerability curves, were initially used to 

assess the vulnerability of areas to flood in 1964 (Smith, 1994). In recent 
decades, they have been widely used in studies on such disasters such as 
floods (Dutta et al., 2003; Wu et al., 2020; Yang et al., 2020), earth
quakes (Singhal and Kiremidjian, 1996; Colombi et al., 2008; Orsini, 
2012; Ranjbar and Naderpour, 2020; Shan et al., 2020; Wang et al., 
2020c), typhoons (Khanduri and Morrow, 2003; Lee and Rosowsky, 
2005; Khajwal and Noshadravan, 2020; Yu et al., 2020), landslides (Bell 
and Glade, 2004; Galli and Guzzetti, 2007), avalanches (Keylock and 
Barbolini, 2001; Cappabianca et al., 2008), and hailfall (Hohl et al., 
2002). In research on agricultural drought, various models of crop 
growth are used to simulate the crop yield loss, following which 
vulnerability curves are drawn. For example, based on an improved 
Environmental Policy Integrated Climate (EPIC) model, Yin et al. (2014) 
used the water stress index to construct vulnerability curves for maize 
drought in 35 countries and regions around the world. Guo et al. (2016) 
subsequently considered environmental factors in this model and fitted a 
global three-dimensional (3D) vulnerability surface. Wang et al. (2020a, 
2013b) and Yue et al. (2015) separately established regionalized 
drought vulnerability curves of wheat in China, and Jia et al. (2012), 
Wang et al. (2019) analyzed the vulnerability of maize. Wei et al. (2019) 
simulated the vulnerability of summer maize in the Huaibei Plain of 
China using the cropping system model (CSM) CERES-Maize. Wang et al. 
(2020c, 2020b) used the Agricultural Production Systems sIMulator 
(APSIM) model to assess the biophysical vulnerability of wheat in 
eastern Australia. Models of crop growth have also been widely used in 
research on the risk of agricultural droughts (Leng and Hall, 2019; 
Kurniasih and Impron, 2017; Wang et al., 2017; Zhang et al., 2019; 
Wang et al., 2020c, 2020b). However, previous studies have focused on 
the entire growing season of crops, and analyses of separate stages of 
growth are rare. In addition, the drought hazard index (DHI) has been 

Fig. 1. Study area.  
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built primarily by using the cumulative values of daily water stress 
during the growing season. These methods ignore the scenario where 
extreme drought events can cause crops to die before the end of the 
growing season. 

In this paper, we consider 241 prefecture-level regions of five main 
maize-growing regions in China as study area, and use the AquaCrop 
model to simulate maize yield in both rain-fed and irrigation scenarios. 
Vulnerability curves of maize were constructed and used to evaluate the 
risk of drought in each region. To solve the problems mentioned above, 
we propose a method that uses a daily average value instead of the cu
mulative value to construct the DHI. We also identify the drought- 
sensitive period of maize by analyzing its vulnerability to drought in 
various stages of growth. 

2. Materials and methods 

2.1. Study area 

As one of the three main cereal crops in China, maize is grown mainly 
in the northeast, north, and southwest, forming a long oblique belt from 
the northeast to the southwest. According to such geographical as 
climate, soil, landforms, and cropping systems, China can be divided 
into six main maize-growing regions: the North Spring Maize Region 
(NS), Huang-Huai-Hai Summer Maize Region (HHH), Southwest 
Mountain Maize Region (SM), South Hilly Maize Region (SH), North
west Irrigated Maize Region (NI), and Qinghai–Tibet Maize Region (QT) 
(Tong, 1992). 

The North Spring Maize Region has a humid climate in a cold 
temperate zone. The region includes Inner Mongolia, Ningxia, Hei
longjiang, Jilin, Liaoning, much of Shanxi Province, and parts of Hebei, 
Shaanxi, and Gansu. Both the temperature and sunlight are moderate. 
The total annual precipitation is 400–800 mm, mostly concentrated in 
July to September, which aligns with the season of maize growth. The 
area of maize planting in this region accounts for 30% of that in China. 
The Huang-Huai-Hai Summer Maize Region is in a warm temperate and 
semi-humid zone. It is south of the North Spring Maize Region, and in
cludes Shandong, Henan, much of Hebei Province, and parts of Shanxi, 
Shaanxi, and Jiangsu. It has a higher temperature and gets more rainfall 
than the North Spring Maize Region. The Southwest Mountain Maize 
Region has a semi-humid climate, and includes Sichuan, Yunnan, 
Guizhou, Chongqing, and parts of Shaanxi, Guangxi, Hubei, Hunan, and 
Gansu. The annual precipitation is 800–1200 mm, mostly concentrated 
in April–October. Both heat and water are adequate for crop growth, but 
the amount of sunlight and quality of soil are poor. The maize planting 

area in this region accounts for 20% of the total planting area in China. 
The South Hilly Maize Region has a humid climate in both the sub
tropical and the tropical zones, and includes Guangdong, Hainan, 
Fujian, Zhejiang, Jiangxi, Taiwan, and parts of Jiangsu, Anhui, Guangxi, 
Hunan, and Hubei. The region receives significant precipitation, and is 
the main rice-producing area of China. The maize planting area accounts 
for 5% of the country’s total maize planting area. The Northwest Irri
gated Maize Region includes Xinjiang and much of Gansu Province; it 
has a continental, arid climate with higher temperatures and abundant 
sunlight. But the total annual precipitation is less than 200 mm, and 
agriculture production is dependent on irrigation. The maize planting 
area accounts for 2% ~ 3% of that of China. The Qinghai-Tibet Maize 
Region includes Qinghai and Tibet, and is an important pastoral and 
forest area of China. Its maize planting area accounts for less than 1% of 
the country’s total because of its cold plateau climate. 

Using data on the global distribution of crop yield provided by 
EarthStat, we chose 241 prefecture-level administrative regions in the 
five main maize-growing regions of China as the study area: 73 in the 
North Spring Maize Region, 66 in the Huang-Huai-Hai Summer Maize 
Region, 52 in the Southwest Mountain Maize Region, 34 in the South 
Hilly Maize Region, and 16 in the Northwest Irrigated Maize Region. The 
Qinghai-Tibet Maize Region was ignored because of its low production 
(Fig. 1). 

2.2. Models and inputs 

AquaCrop is a model of crop growth developed by the FAO to assess 
the effects of the environment and its management on production. The 
model consists of three basic modules: those to determine the soil-water 
balance, simulate crop growth, and the atmospheric composition (Foster 
et al., 2017). 

Crop models can be classified into three main categories based on the 
core growth engines (Steduto, 2003). AquaCrop is a water-driven model 
(Todorovic et al., 2009) that impacts crop yields by controlling the 
available water content in the soil (Steduto et al., 2009). Therefore, 
compared with light-driven models such as the CERES series (Jones 
et al., 2003) and carbon-driven models such as WOFOST (Diepen et al., 
1989), Aquacrop is more suitable for research on the response mecha
nism between yield and water (Ran et al., 2020) because it has a special 
irrigation management module that can set the irrigation method, 
amount of irrigation and related irrigation parameters. Another 
advantage of the AquaCrop model is that it requires fewer input pa
rameters than most crop models while ensuring the requisite accuracy 
(Confalonieri et al., 2009). Many studies have shown that AquaCrop can 

Table 1 
Data and sources.  

Data Type Dataset Data Source Content Resolution Period 

Meteorological 
data 

CN05.1 China Meteorological 
Administration 

Precipitation (Daily) 0.25 degrees 1979–2015 

ERA Interim Daily European Centre for Medium-Range 
Weather Forecasts(ECMWF) 
(https://www.ecmwf.int/) 

Maximum temperature; 
Minimum temperature; 
Mean windspeed; 
Relative humidity; 
Surface net solar radiation. 
(Daily) 

0.125 degrees 

Soil data WISE30sec, v1.0 ISRIC-World Soil Information 
(http://www.isric.org/) 

Soil texture 
(sand content, silt content 
and clay content); 
organic content 
(7 layers) 

30 s 2016 

Crop data Decade Dataset of Crop Growth and 
Development and Soil Moisture in China 

National Meteorological Information 
Center 
(http://data.cma.cn/) 

Crop growth season Station 2005–2012 

Harvested Area and Yield for 175 Crops 
year 2000 

EarthStat 
(http://www.earthstat.org/) 

Average crop yield and 
harvested area 

30 s 1997–2003 

Main Crop Yield and Sown Area China Rural Statistical Yearbook 
(http://data.cnki.net/) 

Maize yield and sown area Prefecture-level 
administrative regions 

2002–2011  
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accurately simulate crop yield under different irrigation conditions 
(Abedinpour et al., 2012; Hellal et al., 2019; Ran et al., 2018, 2019, 
2020). 

According to the FAO’s Irrigation and Drainage Paper no. 33 
(Doorenbos and Kassam, 1979), the transfer equation of crop yield and 
water stress is shown as in Formula 1: 

Yx − Y0

Yx
= ky

(
ETx − ET0

ETx

)

(1)  

where Yx and Y0 are the potential and the actual crop yields (kg/m2), ETx 
and ET0 are the potential and actual evapotranspiration (mm), respec
tively, and ky is the conversion coefficient between crop yield and water 
stress. 

The model improves the equation by separating evapotranspiration 
(ET) into evaporation from soil (E) and crop transpiration (Tr) to avoid 
confusing between the effects of nonproductive and productive 
consumptive water. The final yield is expressed in terms of biomass (B) 
and the harvest index (HI), shown as Formulae 2 and 3, respectively: 

Y = B∙HI (2)  

B = WP∙
∑

Tr (3)  

where Y is final yield (kg/m2), B is biomass (kg/m2), HI is the harvest 
index, WP is the parameters of water productivity (kg/(m2⋅mm)), and Tr 
is crop transpiration (mm). 

The input data required by AquaCrop features four parts (Table 1): 1) 
meteorological data: These included daily precipitation from CN05.1, 
daily maximum and minimum temperature from ERA Interim, and the 
reference evapotranspiration calculated by the FAO’s Penman-Monteith 
equation (Allen et al., 1998). 2) Soil data: These included the texture and 
organic content of soil obtained from WISE30sec, v1.0, to calculate such 
related parameters as permanent wilting coefficient, field capacity, 
saturated water content, and saturated conductivity. 3) Crop data: These 
mainly covered the parameters of growth and development (such as 
canopy coverage, root growth, and growth season), evaporation and 
transpiration, yield formation, and stress. The growth season was 
directly obtained from the Decade Dataset of Crop Growth and Devel
opment and Soil Moisture in China. The sensitive parameters were ob
tained from model calibration while non-sensitive parameters were 
obtained from the reference values of the crop model. In addition, the 
yield and sown area of maize were collected from 241 prefecture-level 
administrative regions. 4) Management data: These mainly included 
irrigation, fertilization, and surface coverage. The details of irrigation 
management are described below, and default values of the model were 
used for the other factors. The data mentioned above were acquired at 
different spatial resolutions. We unified their spatial resolutions to the 
prefecture-level administrative region before importing them to the 
AquaCrop model by following processing. For gridded meteorological 
data and soil data, we calculated the average value of all grids in each 
prefecture-level administrative region and took the average value as 
input. We obtained seasonal data on crop growth in each administrative 
region based on data collected at agricultural stations. For a given 
prefecture-level administrative region, if it had more than one station, 
we calculated the average of all stations in the region; if there was only 
one station, we used the seasonal crop growth data collected at it as 
input; if there was no station within the region, we used the value 
recorded at the nearest station as input. 

2.3. Methods 

2.3.1. Model calibration and validation 
Model calibration is the basis of an accurate simulation. The aim here 

was to identify a set of genetic parameters for maize in different envi
ronments. Before calibration, it is necessary to select sensitive parame
ters that have the most significant effects on the results of the simulation 

because the many crop-related parameters of the AquaCrop model could 
not be calibrated one by one. The process of selecting sensitive param
eters by analyzing the effects of changes in the input parameters on the 
results of the simulation is called sensitivity analysis, and can improve 
the efficiency of model calibration. We used the extended Fourier 
amplitude sensitivity test (EFAST) to select the sensitive parameters. 
EFAST is a method of global sensitivity analysis that emphasizes un
certainties in the entire parameter space, and considers the effects of the 
interactions among multiple parameters (Saltelli, 1999). The sensitivity 
index of each parameter was obtained by decomposing the results of 
variance in the simulation. The greater the sensitivity index is, the 
greater is the influence of the parameters on the results of the simula
tion. EFAST has been widely used in models of crop growth, such as the 
DSSAT (DeJonge et al., 2012), WOFOST (Wang et al., 2013b, 2013a), 
and AquaCrop (Vanuytrecht et al., 2014). In this study, we chose the two 
most sensitive parameters from 36 supported by the FAO. 

We collected statistical data on maize yield in 241 prefecture-level 
administrative regions of China from 2002 to 2011. The yield data of 
the last two years were used for validation while the other data were 
used as samples for model calibration. By keeping the other parameters 
constant, we calibrated the two selected sensitive parameters region by 
region. 

The steps of model calibration were as follows: 1) Set the range of the 
two sensitive parameters from 0.7 x to 1.3 x, where x is the reference 
value of the parameters supported by the FAO crop manual. 2) Search 
for the optimal parameter from 0.7 x to 1.3 x in increments of 0.02 x to 
modify the sensitive parameters and simulate the crop yield under 
various combinations. Use the normalized root mean square error 
(NRMSE) (Formula 4) as the standard to compare these simulated results 
with the statistical data under various combinations of the two param
eters. Select the combination with the minimum NRMSE as the result of 
calibration for each prefecture-level administrative region: 

NRMSE =
1
O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Oi)

2

n

√
√
√
√
√

(4)  

where n is the number of samples, Oi is the statistical yield of the ith 

sample, Pi is its simulated yield, and O is the average value of Oi. 
Finally, we ran the calibrated model under actual meteorological and 

soil-related conditions for the validating years, and compared the 
simulated yield with the statistical yield to verify the accuracy of model 
calibration. 

2.3.2. Irrigation scenario settings 
The irrigation management function in AquaCrop was used to set 

scenarios of maize growth under different irrigation conditions. We set- 
up two scenarios: 100% irrigation and rain-fed. Here, “100% irrigation” 
means that irrigation was immediately triggered once water shortage 
occurred, and water used for irrigation was equal to the demand. We 
then analyzed the scenarios where maize suffered from water stress in 
different stages of its growth. The crop’s growth season was divided into 
four stages according to the definition in AquaCrop: the early growth 
stage, canopy growth stage, middle growth stage, and late growth stage, 
corresponding to periods from the sowing stage to the seventh leaf stage, 
the seventh leaf stage to the tasseling stage, the tasseling stage to the 
milk stage, and the milk stage to the physiological maturity of maize. For 
convenience, we simply number the four growth stages from 1 to 4, 
respectively. Drought might have occurred in any of the four growth 
stages, or in several successive or discontinuous stages at the same time. 
We simulated 14 irrigation scenarios in which irrigation occurred in 
stages 1, 2, 3, 4, stages 1 and 2, stages 1 and 3, stages 1 and 4, stages 2 
and 3, stages 2 and 4, stages 3 and 4, stages 1, 2, and 3, stages 1, 2, and 4, 
stages 1, 3, and 4, and stages 2, 3, and 4. We ran the AquaCrop model 
under all the above scenarios. In addition to differences in irrigation, 
other model drivers including the meteorological conditions, nutrients 
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in soil, and field management settings were consistent such that the 
differences in the results were assumed to have been caused by water 
stress. As drought might have occurred in the growth stages with no 
irrigation, there were 14 possible scenarios of drought corresponding to 
the 14 irrigation scenarios. 

2.3.3. Vulnerability curves 
The Crop Water Stress Indicator (CWSI) was used to define the in

tensity of drought. It describes water stress by the extent to which actual 
evapotranspiration fails to meet potential evapotranspiration. The value 
ranges from zero to one: A larger CWSI represents higher water stress. 
The CWSI was affected by a series of factors, such as climate, properties 
of soil, and the genetic characteristics of the crop. The indicator can 
reflect the impact of drought on crop growth. It was calculated as fol
lows: 

CWSI = 1 −
ET
ETp

(5) 

where ET and ETP respectively represents the actual and potential 
evapotranspiration (mm). Both were outputs of the AquaCrop model at a 
daily scale. 

To reflect the cumulative effect of water stress, the drought hazard 
index (DHI) was defined as the daily average value of CWSI in the 
growth season (Formula 6): 

DHI =
1
n
∑n

i=1
CWSIi (6)  

where DHI represents the drought hazard index, CWSIi is the crop water 
stress index on the ith day, and n is the number of days of the growth 
season. According to Wu et al. (2019), the drought level defined by the 
CWSI can be divided into four types: 0–0.25 as slight drought, 0.25–0.5 
as moderate drought, 0.5–0.75 as severe drought, and 0.75–1 as extreme 
drought. 

Based on the simulated yield obtained by the AquaCrop model, we 
defined the loss in yield caused by drought as the difference between the 
yields in the 100% irrigation scenario and the other scenarios. The yield 
loss rate (YLR) was calculated as follows: 

YLR(%) =

(

1 −
Y2

Y1

)

∙100% (7)  

where Y1 and Y2 respectively represent the maize yields (per unit) in the 
100% irrigation scenario and the other scenarios, respectively. 

Past research has shown that the logistic function can adequately 
describe the relationship between DHI and YLR (Jia et al., 2012; Wang 
et al., 2013b, 2013a; Yue et al., 2015; Cui et al., 2019). Therefore, we 
used the results of simulations of 37 years of the 241 regions as samples 
to construct the drought vulnerability curve by the logistic function. 

2.3.4. Risk assessment 
According to disaster system theory (Shi, 2002), the risk of drought is 

a function of the DHI, vulnerability, and exposure: 

R = f (H,V,E) (8)  

where R, H, V, and E refer to risk, hazard, vulnerability, and exposure, 
respectively. 

Without considering drought mitigation capacity, we set the expo
sure (E) of the regions that were maize growing to one. Then, risk was a 
function of hazard (H) and vulnerability (V). In this study, the hazard 
(H) of drought was assessed by the DHI based on a fixed probability of 
exceeding (5-, 10-, 20-, and 50-year return periods) (Chen et al., 2019; 
Wang et al., 2020c, 2020b). The DHIs for 1979–2015 were calculated 
based on output data from the AquaCrop simulation using Formula 6. 
The probability density function and cumulative distribution function of 
the DHI were formulated using the kernel density estimation method 

Fig. 2. Results of model validation.  

Table 2 
The 10 most sensitive parameters.  

Parameter Parameter description Global 
sensitivity 
index 

Ranking 

Kcb Crop coefficient when canopy growth 
is complete but prior to senescence 

0.4271 1 

HI0 Reference harvest index 0.2832 2 
WP Water productivity normalized for ET0 

and CO2/g⋅m-2 
0.2069 3 

fshape-r Shape factor describing root expansion 0.1334 4 
WPy Adjustment of water productivity in 

yield formation stage/% 
0.1256 5 

p-up3 Upper soil water depletion threshold 
for water stress effects on canopy 
senescence 

0.1241 6 

Zmin Minimum effective rooting depth/m 0.1139 7 
CCx Maximum canopy cover 0.1100 8 
GDDup Minimum growing degree days 

required for full biomass production 
0.1083 9 

CGC Canopy growth coefficient 0.0901 10  

Fig. 3. Vulnerability curve for drought in the entire growth season of maize.  
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Fig. 4. Vulnerability curves for droughts in different growth stages.  
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(Silverman, 1986; Scott, 1992; Wand and Jones, 1995; Simonoff, 1996). 
We then calculated DHIs for 5-, 10-, 20-, and 50-year return periods. 
Finally, the vulnerability curve established in Section 2.3.3 was used to 
calculate the YLRs corresponding to the DHIs in different return periods, 
where this constituted the assessment of vulnerability. 

3. Results 

3.1. Model calibration and validation 

The results of the global sensitivity analysis using EFAST are shown 
in Table 2. The two most sensitive parameters, Kcb and HI0, were selected 
as ones to be calibrated. 

Model calibration was conducted for each prefecture-level adminis
trative region based on the yield data in 2002–2009. Therefore, we 
obtained 241 groups of values of Kcb and HI0 corresponding to the 241 
regions, ranging from 0.32– 1.79 and 0.14– 0.82, respectively. Based on 
the calibrated parameters, the maize yields in 2010 and 2011 were 
simulated and compared with the statistical maize yields to verify the 
accuracy of model calibration. The results are shown in Fig. 2. The 
Pearson’s correlation coefficient of the simulated and statistical yields 
was 0.82 (significant at a level of 0.01). The slope of the regression 
equation was 0.81 so that the scatter points were concentrated near the 
1:1 line. The coefficient of determination R2 and NRMSE of the regres
sion equation were 0.67 and 0.17, respectively. The simulated and 
actual statistical yields were similar, indicating that the model had been 
satisfactorily calibrated. 

3.2. Vulnerability assessment 

3.2.1. Vulnerability curve for the entire crop growth season 
We used meteorological data from 1979 to 2015 to drive the cali

brated AquaCrop model to simulate maize growth and yield under the 
different irrigation scenarios described in Section 3, and then used lo
gistic functions to fit the drought vulnerability curves. Fig. 3 shows the 
vulnerability curves for the entire maize growth season. The function of 
the curve is as follows: 

YLR(%) =
103.6

1 + 159.7e− 13.34×DHI − 0.6329 (9) 

It generally followed an “S” shape. The scattered points in Fig. 3 were 
from the results of simulating five maize-growing regions in 1979–2015. 
The coefficient of determination R2 was 0.93, indicating that the logistic 
curve could adequately describe the relationship between the DHI and 
the YLR. According to the curve, when the DHI was 0.2, the YLR began 
to increase significantly, while when the DHI was 0.6, the YLR was close 
to the maximum. 

3.2.2. Vulnerability curves for various stages of crop growth 
A total of 14 drought scenarios during different stages of maize 

growth were simulated. The fitting results of the drought vulnerability 
curves under these scenarios are shown in Fig. 4 and Table 3. 

As for the entire growth season, the logistic function was used to 
describe the relationship between the DHI and the YLR. Values of R2 of 
the 14 scenarios ranged from 0.28 to 0.92. For four scenarios in which 
drought occurred in single stages, the third stage had the greatest 
negative effect on maize yield, followed by the second, first, and the 
fourth stages, corresponding to periods from the tasseling stage to the 
milk stage, the seventh leaf stage to the tasseling stage, the sowing stage 
to the seventh leaf stage, and the milk stage to the physiological maturity 
stage, respectively. Of these four stages, the last was noteworthy: The 
YRL was always zero no matter how the DHI changed, indicating that 
the maize yield was no longer affected by water stress after the milk 
stage. For scenarios where drought occurred in more than one stage, the 
relationship between the DHI and the YLR became more complex but 
still conformed to the logistic function. 

3.3. Risk assessment 

3.3.1. Drought Hazard Index based on fixed probability of exceeding 
The distributions of the DHI at the four risk levels (5-, 10-, 20-, and 

50-year return periods) were calculated on the basis of the 37-year 
simulation (1979–2015), as shown in Fig. 5. The results showed that 
drought in China decreased from northwest to southeast. Table 4 shows 
the average DHI of the five maize-growing regions under different levels 
of risk. According to them, the Northwest Irrigated Maize Region (NI) 
had the largest drought hazard, and its DHIs at all four risk levels were 
higher than 0.5 (0.5397– 0.5994), indicating that the region’s drought 
intensity was the most significant. This was followed by the North Spring 
Maize Region (NS), with an average DHI between 0.3023 and 0.3851, 
the Huang-Huai-Hai Summer Maize Region (HHH), with an average DHI 
between 0.1741 and 0.2488, the South Hilly Maize Region (SH), with an 
average DHI between 0.1378 and 0.2032, and the Southwest Mountain 
Maize Region (SM), with an average DHI between 0.0896 and 0.141. 

3.3.2. Risk of yield loss 
Based on the distribution of the DHI and the equations for vulnera

bility regression, the distributions of the risk of yield loss under the 
corresponding risk levels (return periods of 5, 10, 20, and 50 years) was 
obtained (Fig. 6). In accordance with the trend of DHI distribution, the 
risk of yield loss in China was also found to be decreasing from north
west to southeast. The average YLR values of the five maize-growing 
regions in the order from large to small were: the Northwest Irrigated 
Maize Region (NI), with an average YRL between 86.17% and 93.39%, 
the North Spring Maize Region (NS), with an average YRL between 
31.69% and 46.2%, the Huang-Huai-Hai Summer Maize Region (HHH), 
with an average YRL between 7.73% and 18.35%, the South Hilly Maize 
Region (SH), with an average YRL between 4.26% and 11.08%, and the 
Southwest Mountain Maize Region (SM), with an average YRL between 
1.58% and 4.25% (Table 5). The results showed that maize production 
in northwest China was almost completely reliant on irrigation, whereas 
in the south and southwest, natural precipitation met most of the de
mand of maize for water. 

4. Discussion 

In previous vulnerability studies, the accumulative value of the daily 
crop water stress index has been used to describe the DHI (this method 

Table 3 
Functions of the vulnerability curves with drought in various stages of growth.  

Drought stage Function R2 RMSE 

1 
YLR

(

%) =
1.713

1 − 0.7895e0.12×DHI − 8.339  
0.72 0.0074 

2 
YLR

(

%) =
-9879

1 + 0.0045e0.86×DHI + 9834  
0.50 0.0490 

3 
YLR

(

%) =
-63.57

1 + 0.022e16.02×DHI + 62.22  
0.73 0.0775 

4 / / / 
1&2 

YLR
(

%) =
-27.03

1 + 0.0034e8.77×DHI + 26.75  
0.28 0.0518 

1&3 
YLR

(

%) =
101

1 + 1679e− 15.61×DHI − 0.3473  
0.83 0.0931 

1&4 
YLR

(

%) =
-7.542

1 + 0.0009e12.83×DHI + 7.514  
0.66 0.0057 

2&3 
YLR

(

%) =
-106.6

1 + 0.0092e13.64×DHI + 105.2  
0.90 0.0890 

2&4 
YLR

(

%) =
-129.7

1 + 0.0008e12.48×DHI + 129.8  
0.81 0.0346 

3&4 
YLR

(

%) =
-82.6

1 + 0.025e12.41×DHI + 80.27  
0.79 0.1048 

1&2&3 
YLR

(

%) =
-102.5

1 + 0.0005e18.54×DHI + 102.3  
0.90 0.0866 

1&2&4 
YLR

(

%) =
103900

1 + 45910e− 4.16×DHI-4.26  
0.45 0.0467 

1&3&4 
YLR

(

%) =
-102.5

1 + 0.0028e13.15×DHI + 101.5  
0.88 0.0826 

2&3&4 
YLR

(

%) =
-106.2

1 + 0.015e12.86×DHI + 103.9  
0.92 0.0828  

X. Zhu et al.                                                                                                                                                                                                                                      



Agricultural Systems 189 (2021) 103040

8

referred to hereinafter as the “accumulative method”) (Yin et al., 2014; 
Guo et al., 2016; Wang et al., 2010; Yue et al., 2015; Jia et al., 2016). 
This paper proposed a method on this basis by using the daily average 
value of the crop water stress index instead of the traditional accumu
lative value to construct the DHI (the proposed method is referred to 
hereinafter as the “average method”). 

The traditional accumulative method is as follows: 

DHIk =

∑n

i=1
CWSIi

max(DHIk)
(10)  

where DHIk represents the DHI in the kth prefecture-level administrative 
region, CWSIi represents the crop water stress index on the ith day, and n 
is the number of days of the growth season. 

The accumulative method considered the accumulative effect of 
droughts but has some disadvantages. When the growth period of crops 
ended ahead of schedule owing to severe water stress, the DHI calcu
lated by the accumulative method was smaller than the actual value. In 
this situation, some outliers that had a small DHI but high yield loss rate 
might have been obtained, where this led to a deviation in the fitting 
results of the vulnerability curves. Moreover, the accumulative DHI 
might have been greater than one. The DHI calculated by accumulative 

method was then adjusted in the range 0–1 by standardization, which 
hindered a comparison of the intensities of water stress among regions 
because the ranges of the original DHIs of different regions were 
different. 

To solve the above problems, we proposed the “average method” to 
calculate the DHI instead of the accumulative method. The calculation is 
shown in Formula 5, and involves dividing the accumulative DHI by the 
number of days of the growth season. Therefore, when the crop had 
grown for the entire season, the intensities of drought described by the 
two methods showed no difference. But in the case where crop growth 

Fig. 5. Drought hazard indices of 241 prefecture-level administrative regions in China based on a fixed exceeding probability: (a) 5-year return period, (b) 10-year 
return period, (c) 20-year return period, and (d) 50-year return period. 

Table 4 
Average drought hazard indices of five maize-growing regions in different return 
periods.  

Region Return period 

5-year 10-year 20-year 50-year 

NS 0.3023 0.3320 0.3556 0.3851 
HHH 0.1741 0.1983 0.2201 0.2488 
SM 0.0896 0.1089 0.1248 0.1410 
SH 0.1378 0.1647 0.1835 0.2032 
NI 0.5397 0.5614 0.5795 0.5994  
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season ended ahead of schedule, using the average method helped avoid 
the problems mentioned above. The range of values of the CWSI was 
between zero and one, and the DHI calculated by the “average method” 
did not require standardization. It was able to preserve its physical 
meaning as the CWSI, and could be easily used to compare the intensities 
of water stress between regions. 

To verify the above, we used both methods to construct the DHI in 
the five maize-growing regions (Fig. 7). The results showed that in re
gions with higher drought intensities, such as the Northwest Irrigated 
Maize Region (NI), North Spring Maize Region (NS), and the Huang- 
Huai-Hai Summer Maize Region (HHH), for sample points with yield 
loss rates close to one, the DHIs calculated by the cumulative method 
were significantly smaller than those calculated by the average method, 

which was consistent with theoretical expectation. Furthermore, the 
results of two methods also exhibited differences in the Southwest 
Mountain Maize Region (SM) and the South Hilly Maize Region (SH) due 
to deviations caused by standardization in the accumulative method. 

Research on the vulnerability of crops to drought has shown that the 
risk of yield loss grows non-linearly with an increase in drought severity 
(Leng and Hall, 2019). Cui et al. (2019) and Wei et al. (2019) divided the 
vulnerability curve into three parts using two inflection points called the 
“disaster-inducing point” and the “disaster-ceasing point”. The three 
parts were the “initial phase”, “developing phase” and “declining 
phase”. In our study, the drought vulnerability curve showed that the 
rate of increase of YLR was slow when the DHI was under 0.2, increased 
when the DHI was between 0.2 and 0.6, and finally became slow again 
when the DHI was above 0.6. Referring to past work (Cui et al., 2019; 
Wei et al., 2019), DHI = 0.2 was the disaster-inducing point where the 
drought grade started to develop from slight to moderate, and YLR grew 
the most quickly. The vulnerability curve changed from the initial phase 
to the developing phase, because of which the YLR began to increase 
significantly. DHI = 0.6 was the disaster-ceasing point, where the 
drought became severe and the YLR decreased most rapidly. The curve 
entered the declining phase, and the influence of drought on maize 
growth and yield was close to the upper limit for guaranteeing the 
survival of the plants. When the water stress increased, the plants died 

Fig. 6. Yield loss rate of 241 prefecture-level administrative regions in China based on fixed exceeding probabilities: (a) 5-year return period, (b) 10-year return 
period, (c) 20-year return period, and (d) 50-year return period. 

Table 5 
Average yield loss risks of five maize-growing regions in different return periods.  

Region 5-year 10-year 20-year 50-year 

NS 31.69% 36.54% 40.65% 46.20% 
HHH 7.73% 10.37% 13.22% 18.35% 
SM 1.58% 2.40% 3.23% 4.25% 
SH 4.26% 6.58% 8.60% 11.08% 
NI 86.17% 89.24% 91.39% 93.39%  
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from a lack of water. The corresponding crop yield loss might thus have 
been close to 100%. 

Combined with the results in Section 3.3, we see that although the 
risk of drought in the North Spring Maize Region and the Huang-Huai- 
Hai Summer Maize Region was significantly lower than that in the 
Northwest Irrigated Maize Region, the DHI values of these two regions 
mostly fell in the “developing phase,” indicating the most sensitive 
response of crop yield to water stress. Therefore, the efficiency of irri
gation of these two regions was theoretically the highest because the 
same amount of water could significantly reduce the loss of crop yield. 

Moreover, the North Spring Maize Region and the Huang-Huai-Hai 
Summer Maize Region had the largest maize production in China. 
Thus, the local government should clarify the demands for agricultural 
irrigation and regulate water resources appropriately to meet agricul
tural demand. In addition, agricultural water-saving irrigation tech
nology should be developed and the efficiency of utilization of water 
should be improved. The risk of drought in the Northwest Irrigated 
Maize Region was the most serious, and the average risk of yield loss was 
86.17% ~ 93.39%. The region’s agricultural production depended 
almost entirely on irrigation. In these extremely arid areas, the 

Fig. 7. Comparisons of the average and the accumulative methods in the five maize-growing regions.  
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government needs to guide the adjustment of agricultural planting and 
the development of drought-resistant varieties of crops. Finally, the 
Southwest Mountain Maize Region and the South Hilly Maize Region 
had enough natural precipitation to meet the needs of crop growth, and 
agricultural production was less dependent on irrigation. Although the 
risk of drought events in these regions was low, farmers should take the 
relevant emergency measures to prevent the occurrence of sudden 
drought events. 

We identified the drought-sensitive period of maize growth by 
analyzing its vulnerability to drought in various stages of growth, and 
clarified its mechanism of water demand and consumption to some 
extent. It has been shown that more than 75% of the field capacity of 
maize was needed during the sowing and emergence stages, 70% ~ 75% 
in the jointing stage, nearly 100% in the tasseling stage, and 65% at the 
end of the milk stage (Chen and Guo, 1995). The tasseling stage was the 
most important stage for yield accumulation. Our research also showed 
that the negative effects of drought in the tasseling stage was the most 
serious. These results can provide a theoretical basis for the prevention 
of yield loss due to drought. 

Due to limitations related to the availability of data, some un
certainties were obtained in our research. For example, in inputs to the 
AquaCrop model, because of a lack of field management data (fertil
ization, pesticides, and surface practices), we had to use the model’s 
default values. We also made some assumptions regarding the unifor
mity of the spatial distribution of maize planting and ignored differences 
between different varieties of maize. All these might have led to de
viations between the results of our simulation and the actual situation. A 
more detailed distinction is needed between varieties of crops and their 
corresponding planting proportions in the future research to overcome 
these limitations. 

5. Conclusions 

This paper proposed a method of the vulnerability and risk assess
ments of drought for maize crops based on the AquaCrop model. The 
main results are as follows: 

1) The drought vulnerability curve of maize for the entire growth sea
son followed an “S” shape, the coefficient of determination R2 was 
0.93, indicating that the relationship between the DHI and the YLR 
was in accordance with the logistic function. The results showed that 
when the DHI approached 0.2, the YLR began to increase signifi
cantly, and when the DHI reached 0.6, the YLR was close to its 
maximum value.  

2) For various growth stages, the values of R2 of 14 scenarios ranged 
from 0.28 to 0.92. For four scenarios where drought occurred in a 
single stage, drought in periods from the tasseling stage to the milk 
stage had the largest negative effect on maize yield, followed by the 
seventh leaf stage to the tasseling stage, the sowing stage to the 
seventh leaf stage, and the milk stage to the physiological maturity 
stage. Maize yield was no longer affected by water stress once in the 
milk stage. The relationship between the DHI and the YLR became 
more complex when drought occurred in more than one stage.  

3) Under all four risk levels (return periods of 5, 10, 20, and 50 years), 
the DHI and YRL of maize in China exhibited a trend of decrease from 
northwest to southeast. The average DHIs and YLRs of the five maize- 
growing regions in the order from large to small were: the Northwest 
Irrigated Maize Region (DHI: 0.5397– 0.5994; YLR: 86.17% ~ 
93.39%), the North Spring Maize Region (DHI: 0.3023– 0.3851; YLR: 
31.69% ~ 46.2%), the Huang-Huai-Hai Summer Maize Region (DHI: 
0.1741– 0.2488; YLR: 7.73% ~ 18.35%), the South Hilly Maize Re
gion (DHI: 0.1378– 0.2032; YLR: 4.26% ~ 11.08%), and the 
Southwest Mountain Maize Region (DHI: 0.0896– 0.141; YLR: 
1.58% ~ 4.25%).  

4) It is better to using the daily average value of the crop water stress 
index than the traditional accumulative value to construct the DHI. 

The average method solves the problem whereby the DHI calculated 
by the accumulative method is smaller than its actual value when the 
growth period of crops ends ahead of schedule owing to severe water 
stress. Moreover, it then becomes easier to compare the intensities of 
water stress among regions. 
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