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Abstract— The applications of high-spatial-resolution satellite
data have been increasing in recent years owing to improvements
in sensor techniques, and the errors in estimated parameters
induced by ignoring topographic effects are increasingly
stressed because their effects are important for parame-
ter retrieval from high-spatial-resolution satellite observations.
A coupled surface-atmosphere model is employed to develop a
two-step multiparameter estimation scheme to simultaneously
estimate multiple parameters (leaf area index, LAI; aerosol
optical depth, AOD; photosynthetically active radiation, PAR;
incident shortwave radiation, ISR; surface albedo, and fraction
of absorbed photosynthetically active radiation, FAPAR) from
long-term Landsat 4–8 top-of-atmosphere (TOA) observations.
First, the influential parameters of the coupled model are
retrieved through optimization retrieval strategies. Then, these
estimated parameters are entered into the coupled model to
compute the PAR, ISR, surface reflectance, surface albedo, and
FAPAR. Validation of this scheme with in situ measurements from
57 sites demonstrates that it can successfully estimate multiple
parameters from Landsat TOA data, with root mean square
errors (RMSEs) of LAI, AOD, FAPAR, visible albedo, shortwave
albedo, PAR, and ISR of 0.69, 0.16, 0.13, 0.034, 0.047, 26.80,
and 64.28 W/m2, respectively. In the two-step multiparameter
estimation scheme, atmospheric and topographic corrections of
satellite observations are avoided because the atmospheric and
topographic effects are incorporated, and the surface anisotropy
is also effectively considered. In addition, by using the two-step
multiparameter estimation scheme, physical connections among
the multiple parameters are ensured since they are estimated
from the same physical model.

Index Terms— Consistent estimation, Landsat, radiative
transfer, topographic effect.

I. INTRODUCTION

COARSE- and moderate-spatial-resolution remote sens-
ing data, e.g., Clouds and the Earth’s Radiant

Energy System (CERES), Advanced Very High Resolution
Radiometer (AVHRR), and Moderate Resolution Imaging
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Spectroradiometer (MODIS) data, have achieved great suc-
cess in advancing the understanding of the Earth system in
recent decades [1], especially in studies of global climate
change, water and carbon cycles, vegetation phenology, land
cover, and land use change. Concurrently, the needs for
high-spatial-resolution data have been growing [2], such as
in precision agriculture, forest mapping, ecosystem charac-
terization, and urban studies. According to Zhu et al. [3],
there have been significant increases in downloads of Land-
sat data and related publications since 2008, when Landsat
data were made publicly available. Furthermore, the recent
Sentinel-2 satellites also provide a large number of high-
spatial-resolution observations. The increasing applications of
high-spatial-resolution data require corresponding algorithms
to produce high-spatial-resolution data products. Therefore,
developing parameter estimation algorithms for high-spatial-
resolution satellite observations and producing high-spatial-
resolution data products are important at the current stage.

The topographic effect is an inevitable factor to be consid-
ered when processing high-spatial-resolution data. Topography
changes the solar-target and target-sensor geometries, affects
direct and diffuse solar radiation on land surfaces, and alters
the observed radiance [4]. Ignoring topographic effects not
only influences the accuracy of forwarding simulation [5]–[8]
but also affects the accuracy of estimating parameters [9]–[14].
These surface reflectance models and parameter estima-
tion methods provide ways to eliminate topographic effects,
but usually neglect atmospheric effects or assume that the
atmospheric parameters are known.

Land surface parameters such as the LAI (leaf area index),
surface albedo, and fraction of absorbed photosynthetically
active radiation (FAPAR) are traditionally estimated from
surface reflectance, the accuracy of which determines the
accuracy of the estimated parameters. Atmospheric correction
is required to obtain surface reflectance and exact atmospheric
parameters are needed; however, retrieving atmospheric para-
meters requires that surface reflectance is known. Thus,
the determination of surface reflectance from atmospheric
correction and retrieval of atmospheric parameters are inter-
dependent [15]. Some studies have explored the possibility
of 1) directly retrieving surface parameters from top-of-
atmosphere (TOA) observations, and 2) jointly retrieving sur-
face and atmospheric parameters. The most classic example
of retrieving surface parameters from TOA data is probably
estimating the surface albedo from TOA observations, which
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is the basic algorithm of the Global LAnd Surface Satel-
lite (GLASS) surface albedo product [16]. There are also
studies that estimate leaf and canopy parameters from TOA
data directly [17]–[23]. For the joint estimation of surface
and atmospheric parameters, a basic framework for esti-
mating multiple parameters from coupled surface-atmosphere
radiative transfer models was developed [15], [24], [25].
For example, in Shi et al. [15], the LAI, aerosol optical
depth (AOD), FAPAR, surface albedo, and photosynthetically
active radiation (PAR) were estimated from MODIS clear-sky
observations through an optimized retrieval strategy. Although
atmospheric effects were incorporated in these studies, none
of them considered the influences of topography on parameter
estimation. In addition, the practicability of the joint estimation
algorithm has not been tested on high-spatial-resolution data.

The objectives of this study are to retrieve multiple para-
meters (i.e., LAI, AOD, PAR, FAPAR, incident shortwave
radiation (ISR), surface albedo, and reflectance) from 30-meter
Landsat TOA observations based on a coupled surface-
atmosphere radiative transfer model with topographic effects.
A two-step estimation scheme is involved. The influential
parameters (LAI and AOD) of the coupled model are first
retrieved from the Landsat TOA reflectance and, thereafter,
their optimal values are entered into the coupled model to
calculate the PAR, FAPAR, reflectance, albedo, and ISR.
The coupled model combines atmospheric and topographic
effects simultaneously, and these effects are also considered
in the multiparameter estimation scheme. Physical consistency
among different parameters is also ensured since they are
estimated from the same model. This consistency is important
to end-users who intend to use remote sensing data prod-
ucts and climate models to study global or regional climate
changes [26], [27].

Section II describes the coupled surface-atmosphere model
with topographic effects and the two-step multiparameter
estimation scheme. The experimental data, including the topo-
graphic data, Landsat observations, and field measurement
data, are also detailed. Section III illustrates the evaluation of
the multiparameter estimation scheme over the selected field
sites, and Sections IV and V present a discussion and brief
conclusions, respectively.

II. METHODOLOGY AND DATA

In this section, the surface-atmosphere radiative transfer
model with topographic effects is introduced and the two-step
multiparameter estimation scheme is described. The coupled
model is introduced first. Then, a sensitivity analysis of
the coupled model is performed to determine the influential
parameters of the coupled model, which are retrieved in the
later two-step estimation scheme. Finally, evaluation of the
estimation scheme is conducted.

A. Coupled Surface-Atmosphere Model With
Topographic Consideration

A surface-atmosphere radiative transfer model coupling
framework (RTM-CF) with topographic consideration was

Fig. 1. Coupled surface-atmosphere system over a sloped surface.

developed in [28]. Based on this RTM-CF and the adding-
method [29], a multilayer system can be established.
Appendix A introduces a necessary background, and details
about coupling models can be found in [28] and [29]. The
atmospheric, canopy, soil, and snow models are coupled to
simulate TOA reflectance. Fig. 1 shows the schematic of the
multilayer system. The inclined land indicates the underly-
ing surface associated with the slope (0◦ –90◦) and aspect
(0◦– 360◦).

1) Atmospheric Part: For the atmospheric layers,
atmospheric variables are derived from the atmospheric
radiative transfer model in libRadtran [30]. The retrieval
algorithm for MODIS cloud parameters is used as a
reference, and it models clouds as a superposition layer [31].
libRadtran is a widely used atmospheric transfer model
and has been applied in various studies, such as those
involving remotely sensed clouds, aerosols, and trace gases
in the Earth’s atmosphere [30]. libRadtran is adopted to
generate official MODIS and Visible Infrared Imaging
Radiometer Suite (VIIRS) cloud parameter products [31]
and is used by the Sentinel team to conduct atmospheric
correction on Sentinel-2 observations [32]. Water and ice
clouds are considered separately owing to their different
optical properties. Two cloud parameters, cloud effective
radius (CER) and cloud water content (CWC), are involved
if the cloud location is predefined.

We define the aerosol and Rayleigh layer with variable
matrices Ra

t , Ra
b , T a

d , and T a
u , where the superscript “a;; indi-

cates the atmosphere without clouds (physical explanations of
the variables in this section is given in Appendix A). Similarly,
the cloud layer is defined with Rc

t , Rc
b, T c

d , and T c
u , where

the superscript “c” represents clouds. The whole atmospheric
layer (the superscript “A” indicates the atmosphere) has optical
variable matrices [29], [33]

R A
t = Rc

t + T c
u

(
I − Ra

t Rc
b

)−1
Ra

t T c
d (1a)

R A
b = Ra

b + T a
d

(
I − Rc

b Ra
t

)−1
Rc

bT a
u (1b)

T A
d = T a

d

(
I − Rc

b Ra
t

)−1
T c

d (1c)

T A
u = T c

u

(
I − Ra

t Rc
b

)−1
T a

u . (1d)

To accelerate the calculations, the look up tables (LUTs) of
Ra

t , Ra
b , T a

u , and T a
d are precalculated. To reduce the LUT
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TABLE I

PARAMETERS FOR THE COUPLED MODEL

size and simplify the model, the default aerosol model is
used. The clear-sky atmospheric variables are presimulated
at various solar zenith angles, view zenith angles, relative
azimuth angles, elevations, and 550 nm AODs. Similarly,
the cloud optical variables in (1) are presimulated at various
solar zenith angles, view zenith angles, relative azimuth angles,
CWCs, and CERs. The settings for generating LUTs of these
atmospheric variables are given in Table II.

2) Surface Part: According to Shi et al. [24], the reflectance
matrix for the underlying land surface RL

s (the superscript “L”
indicates land) is modeled as

RL
s = (1 − ω)Rv

s + ωRi
s (2)

where Ri
s is the reflectance matrix of snow, which is

determined from the asymptotic radiative transfer (ART)
model [34]. The two main parameters used by the ART

model are the diameter of snow grains (d) and the pollutant
proportion (M). The imaginary part of the ice refractive index
is also needed to drive the ART model, and its values are
from [35]. The ART model is highly efficient and has been
widely used for the simulation of snow reflectance. Evaluation
by field measurements and satellite data sets demonstrate that
the ART model has a high accuracy for view zenith angles
less than 60◦ [34], [36]. Rv

s is the snow-free reflectance matrix
above the canopy

Rv
s = Rv

t + T v
u

(
I − Rs

s Rv
b

)−1
Rs

s T v
d (3)

where the superscript “v” indicates vegetation. The reflectance
matrices of the canopy, Rv

t and Rv
b , and the transmittance

matrices, T v
u and T v

d , are simulated by the A two-lay Canopy
Reflectance Model (ACRM). The ACRM is an extension of
the homogeneous multispectral canopy reflectance model [37]
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TABLE II

SETTINGS FOR GENERATING LOOK-UP-TABLES OF ATMOSPHERIC VARIABLES

and the Markov chain canopy reflectance model [38].
The ACRM is a homogeneous turbid model that accounts
for hot-spot effects, specular reflection of direct irradiance on
leaves, and the elliptical leaf angle distribution (LAD) [39].
The PROSPECT (version 3) leaf optical model is used by the
ACRM to calculate leaf reflectance and transmittance, and the
pigment absorption spectra from PROSPECT-D [40] is used in
this study to replace the default ones [41]. In ACRM, the SLW
(specific leaf weight) parameter (see Table I) is introduced
as a normalized factor, and the biochemical parameters are
expressed as its fraction [41]. Thus, the actual leaf pigment
contents are equal to the products of SLW and their input
values. Rs

s is the reflectance matrix of soil, calculated from
the Walthall-Price model, and the superscript “s” represents
soil. The Walthall model is an empirical soil reflectance model
that accounts for non-Lambertian characters [42], [43]. A soil
spectrum is required to be input into the Walthall model, and
the spectrum developed by Price [44] is adopted. Through
the singular value decomposition method, the variety of soil
spectra is described by only four basic functions, so the
number of soil parameters is reduced [44]. The Walthall–Price
model is also the default soil model in the ACRM. The
parameter ω in (2) is a weighting factor, which is 0 for snow-
free conditions.

3) TOA Reflectance Modeling: By considering a terrain
surface with a slope of β and an aspect of ϕT , the TOA
bidirectional reflectance over sloping surfaces is modeled as

r A
so = ρ A

so + τ A
oor L

so Fsunτ
A

ss

+ τ A
doVsky

(
r L

sd Fsunτ
A

ss + r L
dd Fskyτ

A
sd

)
1 − r L

ddρ
A_b
dd

+
τ A

oor L
do

(
Fskyτ

A
sd + ρ A_b

dd r L
sd Fsunτ

A
ss

)
1 − r L

ddρ A_b
dd

(4)

and Fsun and Fsky [4] are

Fsun = ζ
cos θis

cos θs
; Fsky = τ A

ss

cos θis

cos θs
+ (

1 − τ A
ss

)
Vsky (5)

where θs and ϕs are the solar zenith and azimuth
angles, respectively. Further, cos θis = cos θs cos β +

Fig. 2. Schematic for surface radiation fluxes that refers to the sloping
(in green) and horizontal (in blue) planes. The slope-parallel positioned
radiometers measure surface radiation fluxes (E↓

slp and E↑
slp) that refer to

the sloping surface, and the horizontal radiometers measure surface radiation
fluxes (E↓

hor and E↑
hor) that refer to the horizontal plane. Proximal radiometers

are usually installed horizontally in the field.

sin θs sin β cos(ϕs − ϕT ), where ζ is a binary factor (0 or 1)
that indicates whether the pixel is self-shadowed or shielded
by other pixels [45], [46]. θis is the intrinsic solar zenith
angle, which refers to the slope surface. Vsky is the sky
view factor, which can be precalculated from digital elevation
model (DEM) data for a specific number of azimuth direc-
tions [46]. This terrain algorithm considers the topographic
effects on direct solar radiation and the obstruction of the
surrounding topography for hemispherical radiation.

The input parameters of the TOA reflectance model are
given in Table I, and the detailed modeling process can be
found in [28].

4) Modeling of the Surface Parameters: As shown in Fig. 2,
surface radiation fluxes are different when taking different
reference planes (the horizontal plane and the slope-parallel
plane). E↓

slp and E↑
slp represent downward and upward radiation

that refer to the sloping surface, respectively; and E↓
hor and E↑

hor
are downward and upward radiation that refer to the horizon-
tal plane, respectively. Detailed modeling processes of these
parameters and differences between sloping- and horizontal-
referenced parameters can be found in [28] and are not
repeated.

PAR and ISR are the total incident surface solar radi-
ation (SSR) in the spectral ranges of 400–700 nm and
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300–3000 nm, respectively. The SSR on the slope is
given as

SSRslp =
∫ λ2

λ1

P1
(

I − R A
b RL

s

)−1
P in

T T A
d E A

d dλ (6)

and the corresponding SSR on the horizontal plane is

SSRhor =
∫ λ2

λ1

P1 HT
(

I − R A
b RL

s

)−1
P in

T T A
d E A

d dλ (7)

where

HT =
[

Hsun 0
0 Vsky

]
; Hsun = ζ

cos θs

cos θis
(8)

and E A
d = [E A

s cos(θs), 0]T is the TOA solar irradiance
matrix and E A

s is the monochromatic extra-terrestrial solar
irradiance on the plane that is perpendicular to the solar
beam. P1 = [1, 1] is an extraction matrix. λ1 and λ2 are
400 and 700 nm, respectively, for PAR, whereas they are
300 and 3000 nm for ISR.

The surface albedo is the ratio of the reflected and incident
radiation, and its equation refers to the slope coordinate as
follows:

Albedoslp =
∫ λ2

λ1
P2 RL

s

(
I − R A

b RL
s

)−1
P in

T T A
d E A

d dλ∫ λ2

λ1
P1

(
I − R A

b RL
s

)−1
P in

T T A
d E A

d dλ
(9)

and its equation for the horizontal plane is given as

Albedohor =
∫ λ2

λ1
P2 Pout

T RL
s

(
I − R A

b RL
s

)−1
P in

T T A
d E A

d dλ∫ λ2

λ1
P1 HT

(
I − R A

b RL
s

)−1
P in

T T A
d E A

d dλ
(10)

where P2 = [1, 0]. For the visible albedo, λ1 and
λ2 are 400 and 700 nm, respectively, whereas they are
300 and 3000 nm for the shortwave albedo.

Absorbed photosynthesis active radiation (APAR) is the
portion of PAR absorbed by vegetation, and FAPAR is their
ratio, i.e., FAPAR = APAR/PAR

APAR = (1 − ω) ·
∫ 700

400

[(
P1 − P2 RL

s

)(
P1 − P2 Rs

s

)
D̃v

](
I

− R A
b RL

s

)−1
P in

T T A
d E A

d dλ (11)

where D̃v = (I − Rv
b Rs

s )
−1T v

d is the equivalent transmittance
matrix for the canopy [24]. ω is 0 for a snow-free land surface.
It is critical that FAPAR value will be different if different
coordinates (PARslp or PARhor) are taken as a reference. The
value FAPAR = APAR/PARslp is used in this study.

The surface reflectances of the Landsat channels are output,
and they are also different with different coordinates

BRFhor = BRFslp · Fsun. (12)

In this study, if not specified, the downwelling radiation
(PAR and ISR) and albedo parameters referenced to the
horizontal coordinate are compared with the field-measured
data because the proximal sensors are set horizontally in the
field for the selected sites.

B. Global Sensitivity Analysis

The extension of the Fourier amplitude sensitivity test-
ing (EFAST) method is adopted to identify influential para-
meters of the coupled surface-atmosphere model. EFAST is
a global sensitivity analysis method, which means it provides
information on how the variation of model output is produced
by the variation of model input parameters individually and
globally through interactions with each other [15], [22], [47].
EFAST is applied to (4) since TOA reflectance is used in
retrieval. EFAST is a variance-based method, and it decom-
poses the variance in the output into fractions that can be
attributed to the input parameters [48]. Variance-based meth-
ods have been widely used in the remote sensing commu-
nity [22], [49]–[51]. The geometric solar, view, and terrain
angles are not included in the sensitivity analysis because
they are given variables, and it is not necessary to test their
retrievability [51]. Ideally, a sensitivity analysis should be
conducted over all possible geometric angles. However, this
is a massive task, and a previous study [49], as well as
our experience, showed that the influential parameters are
generally the same under different geometric angles.

Therefore, the observation and terrain geometries are fixed.
The view zenith angle is set to 0◦, considering that Landsat
observations have small zenith angles. Two solar zenith angles
(30◦ and 50◦) over a flat and a sloping surface (β = 30◦) were
tested independently under clear atmospheric and snow-free
conditions. The results under different geometric conditions
are similar, although the absolute values have discrepancies.
Four influential parameters are identified at the shortwave
bands of Landsat, viz. AOD, LAI, SLW, and s1. The four
parameters are treated as free variables during retrieval under
clear atmospheric and snow-free surface conditions. Under
clear atmospheric and snow-covered surface conditions, snow
contributes the most to the observations due to its high
reflectance. Thus, two snow parameters (the effective diameter
of snow grains, d , and the snow weighting factor, ω) are iden-
tified as influential and are set as free variables. Under cloudy
atmospheric conditions, the two cloud parameters (CER and
CWC) are identified as influential parameters. The sensitivity
analysis results for clear atmospheric and snow-free conditions
(θs = 30◦ and β = 0◦) are illustrated in Fig. 3, and the other
results are not shown here.

C. Two-Step Estimation Scheme Considering Topography

The multiparameter estimation scheme is a two-step
process. The first step is the direct estimation part. The
influential parameters of the coupled model are retrieved from
Landsat TOA observations based on an optimization inversion
strategy. The second step is the indirect estimation part. The
retrieved optimal parameters are entered into the coupled
model to calculate the PAR, ISR, surface reflectance, surface
albedo, and FAPAR.

Identifications of the atmospheric (clear or cloudy) and
surface (snow covered or not) states is required, and this
information comes from the Landsat data set. If a pixel is
identified as clear and snow-free, then no cloud and snow
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Fig. 3. Total-order sensitivity index (SI) of the input parameters of the
coupled model. The relative spectral response of Landsat 4 (L4), 5 (L5),
7 (L7), and 8 (L8) are overlaid. Strong absorption regions (1100–1400,
1325–1475, and 1800–2000 nm) are masked. For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version
of this article.

parameters are involved. The merit function is given as

J (m) = 1

2

[
(g(m) − yo)

T C−1
D (g(m) − yo)

+ (m − mp)
T C−1

M (m − m p)
]

(13)

where m is the vector that includes the parameters to be
estimated, m = [AOD, LAI, SLW, s1]T , and m p is the prior
estimation of m. In this study, the GLASS LAI climatology
and MERRA-2 AOD data sets provided the prior values
of LAI and AOD, respectively. Further details are given in
Section II-D2. The Landsat TOA reflectance is included in
yo = [b1, b2, b3, b4, b5, b6, b7]T (bi , i = 1, . . . , 7 is the
i -th band TOA reflectance of Landsat; b6 is for Landsat 8
only), and it includes the influences of topography. g(m) is
the modeled Landsat TOA observations, and the proposed
TOA reflectance model with topographic effects (4) is used.
C M is the covariance matrix for errors in the prior information,
and C D is the covariance matrix describing the observational
uncertainties. The uncertainties in the prior values and Landsat
TOA reflectance are assumed to be uncorrelated. Thus, C M

and C D are diagonal [52]. Landsat TOA reflectance does not
provide uncertainty values. In this study, the six or seven
diagonal elements of C D are set to 0.04 times the corre-
sponding reflectance values. The first and second diagonal
elements of C M are 0.05×AOD and the standard deviation
of the 18-year GLASS LAI, respectively, as discussed in
Section II-D2. The uncertainty values for SLW and s1 are
30.0 and 0.07, respectively, which are identical to the settings
in the study by [15] and are described in [41].

If a pixel is identified as a clear and snow pixel, only the
effective diameter of snow grains (d) and the snow weighting
factor (ω) are involved. The pollutant concentration is fixed
because it has much less influence than d , as found by EFAST
sensitivity analysis (the results are not shown). The merit
function is given as

J (m) = 1

2

[(
g(m) − yo

)T
C−1

D

(
g(m) − yo

)]
(14)

where m = [ω, d]T . The atmosphere, canopy, and soil para-
meters are fixed under this condition. Particularly, prior LAI
and AOD values are used as inputs.

If a pixel is identified as cloudy, then the surface parameters
are fixed, and only the two cloud parameters CER and CWC
are free variables. The merit function has the same form
as (14), but m = [CER, CWC]T . Owing to the lack of cloud
type identification, the retrieval is conducted for both water
and ice cloud types, and retrieval with a smaller J (m) value
is selected.

For all the retrievals, the shuffled complex evolution (SCE)
algorithm [53] was used in this study to search for the optimal
estimates of the variables. SCE is a global optimization
strategy. It does not rely on derivatives of the target merit
function and has been proven flexible and robust [54]. The
advantages of simple production with the concepts of con-
trolled random search, competitive evolution, and the complex
shuffling strategy are combined in SCE [55]. Besides, it is less
sensitive to initial values [53].

The direct estimation part is finished once the optimal values
of the influential parameters are retrieved. The retrieved opti-
mal values are then input into the coupled model to calculate
the PAR, ISR, surface reflectance, albedo, and FAPAR, and
the estimation process is finished.

D. Data

1) Landsat Observation: Shortwave Landsat 4, 5, 7, and 8
data are used in this study. They have a spatial resolution
of approximately 30 m. Landsat 4–7 have similar spectral
responses, while Landsat 8 has an extra blue band, as shown
in Fig. 3. The quality control (QC) information included in
the Landsat data provides the identification of the cloud and
snow states for each pixel [56], which is used for retrieval. The
Landsat Level-1 TOA reflectance is used to estimate multiple
parameters, while the Level-2 surface reflectance data product
is used for comparisons with the retrieved surface reflectance
values.

2) Auxiliary Data: The Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model (ASTGTM) global 1-arc-second data set
provides elevation values [57], which are further used to
calculate the slope, aspect, and sky view factor [45], [46],
[58].

Prior information on the LAI, AOD, and clumping
index (CI) is used in this study. A global LAI climatology
map generated from the 18-year (2001–2018) GLASS LAI
product [59] is used. The averaged values and standard devia-
tions are used as the prior and its uncertainty in the retrieval,
respectively. The MERRA-2 AOD product [60] provides prior
AOD values. The evaluations of the MERRA-2 AOD prod-
uct [61], [62] indicated its high accuracy, and the uncertainty
value of 0.05 × AOD is used in the retrieval process. The
global CI product produced by [63] is used for the CI. This
18-year (2001–2018) CI product was processed to generate a
global climatology CI map, which is the input in the retrieval
process.

3) Field Data: Existing data sets with field measurements
used were collected to evaluate the retrieval results. All seven
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Fig. 4. Field sites used for validation in this study. Different field networks/
projects are illustrated with different symbols. For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.

sites of the Surface Radiation (SURFRAD) project are used
to validate the PAR, ISR, shortwave albedo, and AOD.
The measurements from the SURFRAD sites have a temporal
resolution of 1 or 3 min, and only the data that are labeled
good quality are used. All the Landsat 4–8 observations
(1980–2018) at the seven sites were downloaded, and multiple
parameter estimations were conducted and evaluated.

The field LAI and FAPAR were primarily obtained from the
ImagineS database (http://fp7-imagines.eu/) and the Validation
of Land European Remote sensing Instruments (VALERI)
database (http://w3.avignon.inra.fr/valeri/). The selected sites
provide high-spatial-resolution LAI/FAPAR maps derived
from in situ point measures and Landsat data. The correspond-
ing Landsat TOA observations at the in situ pixels are collected
and retrieved for comparison with the reference values.

The baseline surface radiation network (BSRN) database
provides long-term shortwave radiation data from globally
distributed sites [64], and 33 such sites are used in this
study. The BSRN provides a toolbox [65] to provide QC
information for the data, and only good-quality data are used.
Two sites from the AmeriFlux project are selected, both of
which provide field-measured visible albedo values, and the
US-Bo1 site also has field LAI measurements. The AOD
data from the AERONET site near the selected BSRN and
AmeriFlux sites are used based on availability. The quality-
assured Version 3 and Level 2.0 AOD values in 15-min
intervals are extracted [66].

The geolocations of the selected field sites are shown
in Fig. 4, and the corresponding information is listed
in Table III.

4) Simulated Data: Most of the long-term flux measure-
ment sites are set on areas as flat as possible for easy
maintenance. As seen from Table III, the majority of the
slope values of the field sites (57 in total) are less than 6◦.
Therefore, the influence of topography on estimating para-
meters cannot be well illustrated through in situ data only.
A simulation experiment is conducted to demonstrate the
importance of topographic effects on estimating parameters
by using the simulated TOA reflectance. Then, multiple para-
meters are retrieved from the simulated reflectance but using
the model that does not consider topographic effects. The
differences between the estimated parameters and the “true”
values are caused by ignoring the topographic effects. Without

Fig. 5. Relative errors for the estimated parameters when ignoring the
influences of topography. Refer Section II for the definitions of the parameters.
For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.

Fig. 6. Influences of slope values on the estimation of the multiple parame-
ters. The normalized NRMSE values are calculated for all retrieved parame-
ters, and are then grouped by slope values. NRMSE = RMSE/(Max-Min).

a loss of generality, the sensor is assumed to be nadir-
viewing, and the solar zenith angle is fixed to 25◦. Three LAI
values (1, 3, and 5) and two soil reflectance spectra (high
reflective and low reflective) are used. The slope values are
simulated from 0◦-60◦ with an interval of 10◦, and the aspect
values are simulated from 0◦-180◦ with an interval of 45◦.

III. RESULTS AND ANALYSES

A. Simulated Data

The importance of topographic effects on parameter esti-
mation is demonstrated by using simulated data (refer to
Section II-D4) first before applying the estimation algorithm
to the Landsat observations. The simulated TOA reflectance
over different surface conditions is used in the retrieval, and
the model without the consideration of topography is applied.
Fig. 5 shows the boxplot of the relative differences for different
parameters, each of which is the statistical result over all
simulated data. It can be seen that ignoring topographic effects
can induce an error of 50% for LAI, and the errors in the
other ten radiation-related parameters are also significant. The
errors induced by neglecting topographic effects that grouped
by slope values are plotted in Fig. 6. The normalized root
mean square error (NRMSE) values are calculated for every
retrieved parameter and are then grouped by slope values.
The metric NRMSE, which is calculated by root mean square
error (RMSE)/(Max-Min), is used to remove the amplitude of
different parameters. Fig. 6 shows that NRMSE increases with
slope values, which is consistent with the estimation errors
increasing with slope values if ignoring topographic effects.
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TABLE III

INFORMATION OF THE 57 SELECTED FIELD SITES FOR THE VALIDATION OF ESTIMATED PARAMETERS. THE SURFACE
TYPE IS FROM THE DESCRIPTIONS OF THE SITE, AND A N/A SYMBOL IS FILLED IF NOT PROVIDED
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Fig. 7. Retrieved (b) LAI, (c) AOD at 550 nm, (d) FAPAR, (e) visible albedo, (f) shortwave albedo, (g) PAR, in W/m2, and (h) ISR, in W/m2 at the
US-Bo1/AmeriFlux site, the corresponding NDVI and NIRV are also plotted in (a). For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.
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Fig. 8. Comparison of retrieved and Landsat 4–8 surface reflectance at the US-Bo1/AmeriFlux site. Only Landsat 8 has the Coastal aerosol band, which is
plotted in (g). For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

B. Landsat Data

The two-step parameter estimation algorithm was conducted
over the 57 selected sites listed in Table III from corresponding
long-term Landsat observations.

The retrieved results for US-Bo1/AmeriFlux are shown
in Figs. 7 and 8. The 35-year estimated multiple para-
meters show reasonable seasonal trends. Only the results
under clear-sky conditions are shown for the LAI and AOD.
The normalized difference vegetation index (NDVI) [67] and
the near-infrared reflectance of vegetation (NIRV) [68] from

the Landsat observations under clear-sky conditions are also
given. However, it can be seen from Fig. 7(a) that there
are still some jump values in the vegetation index (VI)
curves (years 1986, 1989, 1992, 2002, 2008, 2010, 2013,
2016, and 2017), indicating imperfect cloud detection [69],
[70]. The incorrect detection of clouds directly influences
the retrieval results, such as jumps in the LAI and FAPAR
at the corresponding times, as shown in Fig. 7(b) and (d),
respectively. The retrieved albedo values have good fits against
the field measurements, and the seasonal patterns are cap-
tured. Comparisons between the retrieved and Landsat sur-
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Fig. 9. Retrieved (b) LAI, (c) AOD at 550 nm, (d) FAPAR, (e) visible albedo, (f) shortwave albedo, (g) PAR, in W/m2, and (h) ISR, in W/m2 at the
FPK/SURFRAD site, the corresponding NDVI and NIRV are also plotted in (a). For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.
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Fig. 10. Comparison of retrieved and Landsat 4–8 surface reflectance at the FPK/SURFRAD site. Only Landsat 8 has the Coastal aerosol band, which is
plotted in (g). For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

face reflectance values are shown in Fig. 8. The estimated
values are plotted with circles, while the Landsat Level-
2 surface reflectance product is plotted with plus signs. Signif-
icant numbers of high Landsat surface reflectance values are
affected by clouds because the current Landsat atmospheric
correction algorithm does not incorporate clouds [71],
[72], while the estimated scheme provides reasonable
values.

The retrieved results for FPK/SURFRAD are shown
in Figs. 9 and 10. Although the LAI values are small at this

site, the seasonal patterns can be clearly identified, and slight
jumps in the VI, LAI, and FAPAR curves can still be observed,
such as in 1999 and 2007. The retrieved AOD shows a good fit
with the field AOD values, as shown in Fig. 9(c). The retrieved
shortwave albedo values are in good agreement with the field
albedo and captured snow events. The retrieved PAR and ISR
are given in the panels of Fig. 9(g) and (h), respectively. It can
be seen that the estimated values match the field values on
the seasonal changes and amplitudes well. However, there are
a few spikes in the field ISR and PAR, such as in 2013,
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Fig. 11. Quantitative comparison of the estimated parameters with the field measurements over the selected site (a) LAI, (b) AOD at 550 nm, (c) FAPAR,
(d) visible albedo, (e) shortwave albedo, (f) PAR, in W/m2, (g) ISR, in W/m2, and (h) comparison of the estimated surface reflectance with the Landsat
Level-2 surface reflectance product. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

which might be attributed to errors in the field measure-
ments. The comparison of the surface reflectances is shown
in Fig. 10. The estimated values are generally consistent with
the Landsat Level-2 surface reflectance product under clear-
sky conditions, but the retrieved reflectance underestimates
the Landsat product at the shortwave infrared (SWIR) bands.
This underestimation when the LAI is very small might be
caused by the applicability of the soil reflectance model,
which is empirical and needs to be updated in the future
[42], [73]. Similarly, it can be seen that the Landsat product is
influenced by clouds and shows high reflectance values, while
the estimated scheme can give reasonable results.

Only two sites with long-term results are shown to
avoid repetitive and uninteresting descriptions. The overall
scatter plots for all the sites are illustrated in Fig. 11.
Direct comparisons of the retrieved LAI and FAPAR are

shown in Fig. 11(a) and (c), respectively. The field values
of the LAI and FAPAR are primarily from the ImagineS
and VALERI projects. The retrieved LAI and FAPAR are
generally consistent with the field-measured values, where
RMSEL AI = 0.69 and RMSEF AP AR = 0.13. However, the
retrieved LAI and FAPAR values tend to underestimate the
field measurements slightly in high-value regions. Evaluations
of the retrieved visible and shortwave albedo values are shown
in Fig. 11(d) and (e), respectively, and most of the estimated
albedo values are near the 1:1 line. Evaluations of the PAR
and ISR are shown in Fig. 11(f) and (g), respectively, and
the estimation scheme performs well in general. However,
as Shi et al. [74] discussed, an issue arises when evaluating
the PAR and ISR. Taking the SURFRAD sites as an example,
the field-measured radiation parameters are the 3-min or
1-min averaged values. The temporal resolution is very good,
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but atmospheric conditions can change faster. The satellite
observations are instantaneous, and it is possible that there are
no clouds during the observation period, but clouds may arrive
later and cause a decrease in the average radiation values.
The comparison of the retrieved and Landsat Level-2 surface
reflectance is shown in Fig. 11(h). The retrieved and Landsat
surface reflectance fit well under clear conditions, while the
main differences happen under cloudy conditions because the
Landsat surface reflectance product gives large values under
cloudy conditions, as shown in Fig. 11(h).

IV. DISCUSSION

Although the evaluation results demonstrate that the pro-
posed parameter estimation scheme is accurate, several issues
still need to be addressed or should be considered to improve
the model in the future.

A. Phase Identification

Incorrect identification of atmospheric and surface condi-
tions is the greatest challenge in this study. Landsat internal
QC information was used in this study. Most of the QC
information has very good accuracy, but some information
still includes errors. As shown in Section III-B, incorrect
identification of conditions can cause mistakes. The majority
of misjudgements are with snow and clouds, both of which
have high-reflectivity properties in the visible and near-infrared
domains. In particular, it is very difficult to detect surface
conditions if clouds, especially thick clouds, exist in the
shortwave range because clouds are highly reflective from
400 to 2500 nm. A potential solution is the combination
of passive microwave and/or synthetic aperture radar (SAR)
remote sensing data, which will be considered in our future
studies.

In addition, the LAI is currently filled with prior values
under cloudy observations, which is not ideal. Unlike MODIS
observations with a one-day visit frequency, the revisit time
of Landsat is 16 days, which implies that using nearby clear
observations as a replacement is impractical. Fusing with
observations from other sensors, such as Sentinel-2, is a
possible solution. Fusing with SAR observations is also a
potential method, and an interesting study by Pipia et al. [75]
gave promising results.

B. 3-D Effect of Clouds

The proposed surface-atmosphere model is a 1-D model,
and it cannot handle the 3-D effect of clouds [13], [76].
This is another source of errors in the parameter estimation
scheme. Although the atmosphere layer can be “replaced” by
3-D atmospheric radiative transfer models, from which the 3-D
effect of clouds is incorporated, it would make the model too
complex to be used in retrieval. Therefore, this 1-D model is
used in the current estimation scheme.

C. Efficiency

Efficiency is another issue. Landsat data have wide spectral
responses, as shown in Fig. 3, which require many computa-
tions for simulating TOA observations because convolutions

over the spectrum are needed. Also, the integration over
the spectrum for radiation-related parameters is also time-
consuming. Therefore, the current multiple parameter estima-
tion algorithm is only suitable for processing small sites and
is hard to apply for regional or global usage because it is
computationally expensive.

Fortunately, recent developments in machine-learning tech-
niques provide potential solutions to the efficiency issue.
The first potential solution is using emulators to replace
complex radiative transfer models [77], [78]. We have tested
this method over flat surfaces in Shi et al. [74]. It did
accelerate the estimation processes because the integration
and convolution over the spectrum are avoided. However,
iterations over the input parameter space to find optimal values
are still needed because the optimization retrieval strategy is
involved. The second potential solution is estimating parame-
ters from TOA observations directly by training relationships
between TOA observations and target parameters. A typical
example can be found in Estévez et al. [23]. However, much
more effort is needed when introducing the second method
into the estimation scheme because multiple parameters are
involved, and further tests are required, especially over rugged
areas.

V. CONCLUSION

A two-step multiparameter estimation scheme is proposed
to estimate the LAI, AOD, surface reflectance, albedo, FAPAR,
PAR, and ISR from Landsat TOA observations. The coupled
surface-atmosphere model incorporates atmospheric, canopy,
soil, and snow models, and the combined atmospheric and
topographic effects are simultaneously modeled. The vali-
dation of the two-step estimation scheme over 57 selected
sites demonstrates that this estimation scheme can be suc-
cessfully used for high-spatial-resolution observations, with
good accuracy. The RMSE values of the LAI, AOD, FAPAR,
visible albedo, shortwave albedo, PAR, and ISR are 0.69, 0.16,
0.13, 0.034, 0.047, 26.80, and 64.28 W/m2, respectively. The
accuracy would be greatly improved if better identification of
the atmospheric and surface conditions was provided.

By using this two-step estimation algorithm: 1) Atmospheric
and topographic effects are simultaneously coupled and
considered, thus avoiding the complex atmospheric and
topographic corrections of satellite observations, and the
anisotropic property of the surface is effectively accounted
for. 2) All parameters are estimated from the same coupled
surface-atmosphere model, which ensures the physical con-
nections among them, and the estimated parameter values are
physically consistent.

Future studies will focus on improving the identification of
clouds and snow and incorporating machine learning accelera-
tion techniques. In addition, the applicability of this algorithm
will be tested on other high-spatial-resolution observations,
such as those from Sentinel-2.

APPENDIX A
BASICS OF THE FOUR-STREAM THEORY

Four-stream theory [29], [79] is the basic frame to couple
the surface and atmospheric radiative transfer models, and a
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brief introduction to the necessary background information
is given here. Imagine a medium layer above an underlying
surface. The reflectance matrix at the top of this coupled scene
R∗

s can be expressed as follows [29]:

R∗
s =

[
r∗

sd r∗
dd

r∗
so r∗

do

]
= Rt + Tu(I − Rs Rb)

−1 Rs Td (15)

where Rs is the reflectance matrix of the underlying surface,
Rb is the reflectance matrix for the bottom of the medium
layer, and Rt is the reflectance matrix for the top surface of
the isolated medium layer. Td and Tu are the transmittance
matrices for the incoming and outgoing radiation (direct and
diffuse), respectively, and I is the identity matrix

Rs =
[
rsd rdd

rso rdo

]
, Rt =

[
ρsd ρdd

ρso ρdo

]
, Rb =

[
0 0

ρb
dd 0

]

Td =
[
τss 0
τsd τdd

]
, Tu =

[
τdd 0
τdo τoo

]
(16)

where r indicates the reflection above the underlying surface
or the ensemble system, ρ is the inner reflection of the medium
layer, and τ is the transmission through the medium layer. The
subscript “s” represents the direct flux in the solar direction,
the subscript “d” represents the hemispherical diffuse flux,
the superscript “b” represents bottom of atmosphere, and the
subscript “o” indicates the radiance (times π) in the direction
of observation. Table IV gives detailed explanations of the
matrix elements [79]. By applying (15) and (16), a multilayer
model can be established.
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