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A B S T R A C T   

The Qinghai-Tibetan Plateau (QTP) has the most fragile ecosystems in the world. Over the past decades, QTP is 
suffering from increasing external pressures of climate change, human activities, and natural hazards, thus 
ecological vulnerability assessment is crucial for its sustainable development. This study proposes an objective 
and automatic framework to assess the ecological vulnerability in the QTP under the threats of mountain haz-
ards, ecosystem degradation and human economic activities and then analyze its spatio-temporal patterns from 
2000 to 2015. An ecological vulnerability index (EVI) is established by integrating natural and anthropic factors 
based on sub-systems of land resources, hydro-meteorology, topography, and social economics. Seventeen in-
dicators are selected to reflect ecological conditions and their weights are determined by principle component 
analysis and entropy weighting methods. Then, the EVI values are automatically categorized into five vulner-
ability levels of potential, light, moderate, heavy, and very heavy to illustrate their spatio-temporal patterns 
across the QTP. Results indicated that spatial distributions of EVI across the QTP exhibited similar patterns 
during the study period at an overall heavy level. Among all the indicators, vegetation was the dominant driver 
for ecological vulnerability. Based on trend analyses during the study period, approximately 10.43% of the QTP, 
mainly distributed in Tibet Autonomous Region, experienced significant increase in ecological vulnerability, 
while 7.38%, mainly distributed in Qinghai Province, experienced significant ecological vulnerability declina-
tion. However, more detailed analyses showed that after the implementation of several ecological protection 
programs, the increasing trend of ecological vulnerability was eased and more regions experienced significantly 
decreasing vulnerability. This indicated the ecological restoration projects conducted by the government were 
efficient in reducing ecological vulnerability.   

1. Introduction 

Global and regional ecosystems are experiencing huge pressures 
resulted from climate change (Debortoli et al., 2019; Jiang et al., 2018; 
Li et al., 2018; Ofori et al., 2017; Pandey and Bardsley, 2015; Yu et al., 
2010), human activities (Gang et al., 2018; Nguyen and Liou, 2019; 
Santer et al., 2018) and natural hazards (Nguyen et al., 2019; Papa-
thoma-Köhle et al., 2019). Thus, assessing the vulnerability of ecosys-
tems is of great significance for environmental management and 
sustainable development. The Qinghai-Tibetan Plateau (QTP), known as 
the third pole, is drawing increasing attention on its unprecedented 

ecological condition changes. The QTP possesses ecosystems with huge 
diversity due to the great variation of topography and climate (Liu et al., 
2018). In addition, the QTP is going through a greater temperature rise 
compared with other regions in the world during recent decades (Dong 
et al., 2012). According to meteorological station measurements, rean-
alysis and remote sensing data, the existing warming trend may continue 
in the future (Kang et al., 2010). Warming of the QTP can lead to glacier 
retreat, inconsistent snow cover change, permafrost melting, which in-
fluences far beyond the QTP itself by changing the water supply of bil-
lions of people downstream and altering the Earth’s atmospheric 
circulation (Qiu, 2008). Therefore, with the most fragile and sensitive 
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ecosystems on the Earth, ecological vulnerability (EV) assessment over 
the QTP becomes crucial for sustainable development at both regional 
and global scales. 

Although multiple definitions of ecological vulnerability have been 
raised (Thywissen, 2006), the definition proposed by Turner et al. 
(2003) is considered the most consistent with current researches, which 
refers to vulnerability as “the degree to which a system, sub-system, or 
system component is likely to experience harm due to exposure to a 
hazard, either a perturbation or a stress/stressor” (Beroya-Eitner, 2016). 
Hinkel (2011) pointed out that there was also a “bewildering array of 
terms” expressing either similar (e.g., risk, sensitivity and fragility) or 
inversely similar ideas (e.g., resilience, adaptive capacity and stability). 
Moreover, ecosystem vulnerability, environment vulnerability and eco- 
environment vulnerability are always used interchangeably with 
ecological vulnerability (Beroya-Eitner, 2016). Therefore, the above- 
mentioned combinations of terms typically represent the same concept 
in literatures. In this study, the most commonly used term “ecological 
vulnerability” is adopted to express this concept. EV, as the intrinsic 
property of an ecosystem, only reveals under external disturbances (De 
Lange et al., 2010). 

As one of the most vulnerable regions in the world, the QTP is 
suffering from multiple threats over the past decades. Due to its unique 
topography, mountain hazards including landslide, debris flow, flash 
flood and collapse have happened frequently (Ma et al., 2004). In 
addition, severe ecosystem degradation including desertification, 
deforestation and grassland degradation has been induced by climate 
change and land management (Cui and Graf, 2009). Ecosystem degra-
dation can be modelled as the interactive dynamics of a stepwise process 
with feedbacks. When ecosystem components are changed under 
external disturbances, the changes will continue to feedback on one 
another to cause a spiraling declination in ecosystem structure and 
function. Moreover, the increasing human economic activities, such as 
road constructions and inappropriate land use, have also casted threats 
on the regional ecosystem. Therefore, this study evaluates the EV under 
the above-mentioned threats over the QTP based on four sub-systems, 
including land resources, hydro-meteorology, topography and social 
economics. Comprehensive and spatially explicit restoration strategies 
can be made based on EV assessments in terms of reducing the impacts 
from external pressures (Li et al., 2018). Therefore, EV assessment is 
instrumental for decision-makers in identifying the key areas for envi-
ronmental protection, and enacting appropriate ecological restoration 
strategies in constructing the ecological security barrier. 

A number of researches have performed EV assessments within the 
coupled natural conditions and human activities over different regions. 
Both Zhao et al. (2018) and He et al. (2018) assessed EV for mainland 
China and pointed out western China was suffering from the most severe 
ecological pressures, among which Tibet Autonomous Region and 
Qinghai province had the highest degree of EV. However, these national 
EV assessments are performed based on administrative units. More 
typically, EV assessments are performed at regional scales since EV- 
related indicators are strongly localized and case-specific (Beroya-Eit-
ner, 2016). Studies performed over medium scale regions, like Tibetan 
Autonomous Region, always adopt spatial data with 500 m or 1 km 
spatial resolution. Wang et al. (2008) assessed EV for Tibet Autonomous 
Region in 2004 and provided corresponding management suggestions at 
1 km scale, and the eco-security of Tibet at 500 m spatial resolution in 
2007 was evaluated by Wang et al. (2010) using a geographic infor-
mation system-based decision support system. In addition, EV assess-
ments can also be performed over smaller regions, including small river 
basins (Li et al., 2006, 2009; Manfré et al., 2012; Xue et al., 2019), na-
tional reserves (Nandy et al., 2015; Zou and Yoshino, 2017), and 
administrative units like cities (Choudhary et al., 2018; Liou et al., 2017; 
Nguyen et al., 2016; Sahoo et al., 2016). The abovementioned studies 
are primarily performed using 30 m spatial resolution Landsat data. 
Moreover, a group of studies have been conducted over small regions on 
the QTP, including Sanjiangyuan region (Liu et al., 2017), northeastern 

margin (Zhou et al., 2010), and northwestern alpine grassland (Li et al., 
2020a). However, EV assessments and its annual change patterns over 
the entire QTP is still rare. Therefore, this study is intended to propose a 
framework for EV assessment over the entire QTP at 500 m resolution 
and explore the annual spatial–temporal change patterns over 16 years. 

Weighting is also an important part in establishing an EV assessment 
framework. As the majority of studies aggregate indicators using the 
weighted sum, the EV assessment results are sensitive to the weights 
applied (Wang et al., 2008). Current weighting approaches can be 
categorized into two groups: subjective and objective methods. Sub-
jective methods require opinions from various experts (e.g., researchers, 
citizens, politicians) to score indicators (Nardo et al., 2008). Analytic 
hierarchy process (AHP) (Saaty, 1977; Saaty and Vargas, 1991) is the 
most widely used subjective weighting approach in ecological re-
searches (Song et al., 2010; Wang et al., 2010). Other methods include 
fuzzy methods (Enea and Salemi, 2001), grey methods (Sahoo et al., 
2016; Yonghong, 2002), artificial neural network methods (Park et al., 
2004) and so on. Some studies also aggregated indicators using out-
ranking procedures, which performed pairwise comparisons of in-
dicators and built the credibility matrix by votes (El-Zein and Tonmoy, 
2015). However, weights from these methods are directly affected by 
the subjective judgements of the experts. The objective weighting 
methods estimate indicator weights based on the intrinsic structure of 
the data. Principle component analysis (PCA) (Wold et al., 1987) is 
capable of projecting multivariate indicators into independent di-
rections, which has been adopted in multiple EV assessments and proved 
to be a robust technique in reducing the dimensions and extracting 
relationship among selected indicators (Li et al., 2006; Nandy et al., 
2015; Zou and Yoshino, 2017). However, PCA is only suitable for highly 
correlated indicators and is inappropriate for estimating weights of 
poorly correlated indicators (Nardo et al., 2008). Furthermore, discus-
sions about the plausibility of performing PCA weighting approach for 
multivariate indicators are always neglected in existing researches. If 
input indicators are not adequate for PCA, the results may be prob-
lematic with increased uncertainties. Dziuban and Shirkey (1974) sug-
gested that the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of 
sphericity were effective methods to test sample adequacy for PCA. 
Therefore, these two tests are introduced in priority to the weighting 
procedure in this study. For indicators failed these two tests, entropy 
method will be adopted to estimate the weights. Entropy weighting is 
also one of the most used objective weighting methods for ecological 
assessment studies (Zhao et al., 2018; Zhou et al., 2017), which de-
termines indicator weights based on the information entropy of each 
indicator (Shannon, 1948). However, entropy method is more likely 
influenced by outliers. Therefore, entropy method is adopted as the 
backup plan for indicators inappropriate for PCA. To summarize, this 
study introduces sample adequacy tests to determine the proper 
weighting approach, which can further improve the credibility of the 
results. 

Therefore, the main purpose of this study is to propose an objective 
and automatic framework for ecological vulnerability assessment in the 
QTP. First, the ecological vulnerability index (EVI) regarding to the 
threats of mountain hazards, ecosystem degradation and human eco-
nomic activities is obtained from the model consisted of four sub- 
systems, including land resources, hydro-meteorology, topography, 
and social economic. The four sub-systems synthetically consider factors 
from natural and anthropic sub-systems. Second, an assessment frame-
work is established to integrate the processes of objective indicator 
weighting, EVI calculating and categorizing. Sample adequacy tests are 
introduced in selecting the proper weighting approach to increase the 
credibility of assessment results. The framework is also applicable for EV 
evaluation over other regions. Third, the spatio-temporal EV patterns 
over the QTP from 2000 to 2015 is analyzed and regions with significant 
changes are identified, which is seldomly performed over the QTP by 
existing researches. 
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2. Methodology 

2.1. Study area 

The Qinghai-Tibetan Plateau (QTP) (Fig. 1), located in western 
China, is well known as the “Roof of the World” (Liu et al., 2018). It lies 
between 26◦N to 39◦N and 73◦E to 104◦E, covering the entire Tibet 
Autonomous Region and parts of Qinghai, Sichuan, Gansu, Yunnan 
provinces and Xinjiang Uygur Autonomous Region of China with a total 
area of approximately 2.5 million square kilometers and an average 
altitude over 4000 m. The QTP and its surroundings contain the largest 
number of glaciers in the world except the polar regions. These glaciers, 
as headstreams of many prominent Asian rivers, including the Yangtze 
river, the Nu River, the Indus River and so on (Yao et al., 2012), are 
providing food, fresh water and many other ecosystem services to bil-
lions of people downstream. From the northeastern to the southwestern 
QTP, forest, shrub, alpine grassland, alpine meadow and alpine desert 
ecosystems are distributed successively, with wetland ecosystems 
located among them. Severe desertification, deforestation and grassland 
degradation was induced by human activities (Cui and Graf, 2009). 
However, on the whole, vegetation across the QTP experienced an 
increasing trend during the past decades with the northeastern regions 
showing a consistent greening trend while the southwestern regions 
being browning in 2000s and starting greening since 2010 (Li et al., 
2020b). The population over the QTP is much smaller than its sur-
rounding regions. The entire region shares similar cultural background 
and the policies are more tilted toward environmental protection rather 
than economic development. Therefore, with its unique environmental 
and anthropic conditions, the QTP is an appropriate geographic unit for 
EV assessment. 

2.2. Framework for EVI assessment 

An automatic and objective framework integrating indicators from 
land resources, hydro-meteorology, topography, and social economic 
sub-systems was proposed to perform EVI assessment over the QTP from 
year 2000 to 2015 (Fig. 2). Indicator weights were estimated using 
objective weighting approaches based on the intrinsic characteristics of 
data rather than subjective opinions from experts. In addition, KMO test 
and Bartlett’s test of sphericity were used to test sample adequacy and 
determine the proper weighting approach, which will be further 
explained in Section 2.2.2. Finally, EVI was classified into a certain 
number of categorizes to provide a generalized understanding about the 
degree of the EV across the QTP. 

2.2.1. Indicator selection 
To evaluate the vulnerability regarding to the threats induced by 

mountain hazards, ecosystem degradation, and human economic 

activities, indicators were selected based on four sub-systems of land 
resources, hydro-meteorology, topography, and social economics 
(Table 1). Even though the assessment was performed based on a sub- 
system framework, the selected indicators well covered the exposure, 
sensitivity, and adaptive capacity aspects of EV. Geospatial data were 
selected to represent the four sub-systems considering the nature of the 
threats, spatial resolution and accuracy comprehensively. The EVI 
values, quantitative expression of EV, were firstly calculated for each 
sub-system, and then integrated into the final EVI across the study area. 

Land resources sub-system directly reflects the land cover changes. 
Most importantly, it is capable of revealing the vegetation dynamics 
over the study period. The selected indicators included vegetation pa-
rameters and Land Use and Land Cover (LULC) data. Vegetation pa-
rameters estimated by remote sensing techniques have long been served 
as a significant role in environmental and ecological studies. Commonly 
used vegetation parameters include Leaf Area Index (LAI) (Chen et al., 
2019), Fractional Vegetation Cover (FVC) (Jia et al., 2016), Gross Pri-
mary Productivity (GPP) (Frazier et al., 2013), Normalized Difference 
Vegetation Index (NDVI) (Yu et al., 2010), and Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) (Wang et al., 2015). These 
vegetation parameters directly reflect vegetation growth and density. 
These parameters vary in their intrinsic physical meanings. For instance, 
LAI denotes to the vertical density of vegetation, while FVC denotes to 

Fig. 1. Location of the study area.  

Fig. 2. Flowchart of the EVI framework.  

M. Xia et al.                                                                                                                                                                                                                                     



Ecological Indicators 123 (2021) 107274

4

the vegetation density in horizontal direction. All the above-mentioned 
parameters were selected to fully explore and utilize the information 
contained by vegetation. Due to better performances in spatial–temporal 
coverage and validation accuracies compared with other similar satellite 
products (Cai et al., 2014; Jia et al., 2015; Liang et al., 2013; Xiao et al., 
2015, 2017, 2016), Global LAnd Surface Satellite (GLASS) products 
were selected as the data sources for these vegetation parameters. In 
addition, LULC, as the result of interactions between natural factors and 
human activities, is also an important factor in EV assessment (Jin et al., 
2019). Moderate resolution image spectroradiometer (MODIS) annual 
product MCD12Q1 (Friedl et al., 2010), released by the United States 
National Aeronautics and Space Administration (NASA), was adopted in 
this study. The International Geosphere-Biosphere Programme (IGBP) 
class scheme was aggregated and reclassified into six new categories, 
which were scored to 0.2, 0.4, 0.6, 0.8 and 1 (Table 2). Land cover types 
of water and snow and ice were excluded in this study. 

Hydro-meteorology indicators were selected to show the climate 
changes and hydrological conditions. Due to the severe impacts of 
climate change on ecological environment (Li et al., 2018; Pandey and 
Bardsley, 2015), meteorology indicators, especially temperature and 
precipitation, are crucial components for EV assessment. Annual pre-
cipitation and temperature at 1 km resolution, were provided by the 
Data Center for Resource and Environment Sciences, Chinese Academy 
of Sciences (RESDC) (http://www.resdc.cn/). Both precipitation and 
temperature datasets were established using interpolation method 
(Hutchinson, 1998) based on daily observations from over 2400 mete-
orology stations in China. Apart from climate indicators, evapotranspi-
ration (ET) and albedo are also important indicators for EV assessment 
in that they are pivotal drivers for the formation of the QTP’s monsoon 
climate type (Wu et al., 2012). GLASS ET and albedo products were 
selected for further evaluation due to their better performances in ac-
curacy and spatial continuity compared with similar products (Liu et al., 

2013; Yao et al., 2014). Moreover, distance to waterways is also a sig-
nificant factor based on its ability to describe the hydrological condi-
tions of water availability across the study area. This indicator was 
calculated based on vectors of waterway networks derived from Open 
Street Map (OSM), an open source website providing geographic data 
contributed by volunteers worldwide with high accuracy (Wang et al., 
2013). Rivers, canals and streams among the waterways were chosen for 
further analyses. 

For topography sub-system, elevation, slope angle, and slope aspect, 
generated from Shuttle Radar topography Mission (SRTM) Digital 
Elevation Model datasets, were obtained from Geospatial Data Cloud 
(http://www.gscloud.cn/) in the spatial resolution of 90 m. Regions at 
higher altitudes are more likely to suffer from climate extremes, while 
steep topography can lead to considerable runoffs, bringing in soil 
erosion and landslides. Slope aspects facing the north receive less solar 
illumination than that facing the south, which is also an influence factor 
for vegetation growth. Therefore, topography should be considered as 
an essential aspect in evaluating regional EV. 

Social economic indicators were selected to quantify anthropic 
pressures across the study area. The selected indicators include popu-
lation, gross domestic production (GDP), and distance to roads. High 
values of population and GDP directly reflect the human pressure and 
intensity of economic activities. Population and gross domestic pro-
duction (GDP) data in 2000, 2005, 2010 and 2015 at 1 km resolution 
were obtained from RESDC. In this study, population and GDP data for 
each year were also employed in the EVI calculation over the latter four 
years (e.g. population and GDP in 2000 was adopted for assessments in 
2000, 2001, 2002, 2003 and 2004). Moreover, distance to roads is 
selected to reflect the degree of human involvement. To avoid over-
estimating the impacts of roads, distances were only computed based on 
primary and secondary roads provided by OSM. 

2.2.2. Data preprocessing and standardization 
EVI assessment was performed at 500 m spatial resolution and 

annual temporal resolution. Indicators at other spatial resolution were 
resampled to 500 m using nearest neighbor method. Vectors of water-
ways and roads were transformed into raster data at 500 m spatial res-
olution and the distances from each pixel to the nearest waterway and 
road were calculated, as the indicators of distances to waterways and 
roads. In addition, for indicators with 8-day temporal resolution, annual 
datasets were generated using a maximum value composite (MVC) 
method. After data preprocessing, the effect directions of each indicator 
were determined. The effect directions express whether each indicator 
has a positive or negative relationship with ecological vulnerability 
(Table 1). 

Next, data standardization was performed for all indicators. In-

Table 1 
Key indicators of EVI, effect directions, and spatial and temporal resolutions of the selected data.  

Sub-systems Indicators Effect direction Resolutions Data sources 

Land resources Leaf Area Index – 1 km/8 day Xiao et al. (2016) 
Fractional Vegetation Cover – 500 m/8 day Jia et al. (2015) 
Gross Primary Productivity – 500 m/8 day Cai et al. (2014) 
Normalized Difference Vegetation Index – 500 m/8day Xiao et al. (2017) 
Fraction of Absorbed Photosynthetically Active Radiation – 1 km/8 day Xiao et al. (2015) 
Land Use and Land Cover + 500 m/annual Friedl et al. (2010) 

Hydro-meteorology Evapotranspiration – 1 km/8 day Yao et al. (2014) 
Albedo + 1 km/8 day Liu et al. (2013) 
Precipitation – 1 km/annual http://www.resdc.cn/ 
Temperature – 1 km/annual 
Distance to waterways + 500 m https://www.openstreetmap.org/ 

Topography Elevation + 90 m http://www.gscloud.cn/ 
Slope +

Aspect +

Social economics Distance to roads – 500 m https://www.openstreetmap.org/ 
Population + 1 km/5 years http://www.resdc.cn/ 
Gross Domestic Product + 1 km/5 years  

Table 2 
Reclassified information about land use and land cover.  

Original Classes Reclassified Score 

Evergreen needle leaf evergreen broad leaf/ 
deciduous needle leaf/deciduous broad 
leaf/mixed forest 

Forest 0.2 

Closed/open shrubland Shrubland 0.4 
Savannas, grasslands, wetlands, croplands Savannas, grasslands, 

wetlands, croplands 
0.6 

Urban and built-up Urban and built-up 0.8 
Barren and sparsely vegetated Barren and Sparsely 

Vegetated 
1.0 

Water, snow and ice Water, snow and ice No 
Data  

M. Xia et al.                                                                                                                                                                                                                                     

http://www.resdc.cn/
http://www.gscloud.cn/
http://www.resdc.cn/
https://www.openstreetmap.org/
http://www.gscloud.cn/
https://www.openstreetmap.org/
http://www.resdc.cn/


Ecological Indicators 123 (2021) 107274

5

dicators are distributed at various scales with different units, making 
them unable to be compared or integrated. Therefore, z-score method 
(Eq. (1)) was applied to standardized the indicators to a uniform scale 
with the mean values of 0 and the standard variations of 1. 

Z =

⎧
⎪⎨

⎪⎩

x − μ
σ , x is a positive indicator

μ − x
σ , x is a negative indicator

(1)  

where Z is the standardized indicator, x is the input original indicator, μ 
is the arithmetic mean of x and σ is the standard deviation of x. 

2.2.3. Weighting approach 
Estimating the weights for all the indicators and sub-systems is 

another key step in EVI assessment. An objective approach incorporating 
PCA and entropy weighting approaches was developed to estimate 
weights for each indicator. Even though PCA method is effective in 
selecting representative features from highly correlated multivariate 
datasets by projecting the original data into independent directions, it is 
not suitable for all datasets. According to Dziuban and Shirkey (1974), 
datasets with low correlation are inappropriet for factor and component 
analysis, and they pointed out KMO test (Kaiser, 1970) and Bartlett’s test 
of sphericity (Bartlett, 1950) were effective methods to test the sampling 
adequecy for factor and component analysis. Sampling adequacy 
measured by KMO varies from 0 to 1 and are often categorized as in the 
0.90 s, 0.80 s, 0.70 s, 0.60 s, 0.50 s, and below 0.50, referring to 
marvelous, meritorious, middling, mediocre, miserable, and unaccept-
able adequacy to perform factor or component analysis (Kaiser and Rice, 
1974), respectively. Bartlett’s test of sphericity checks if redundancy 
exists in variables that can be summarized with some factors. Therefore, 
when the indicators failed to past KMO test the Bartlett’s test of sphe-
ricity, the entropy method steps in to estimate weights based on infor-
mation entropy, which is also a widely applied objective weighting 
approach for ecological studies and always produces reasonable results 
(Yu et al., 2015; Zou et al., 2006). In this study, datasets with the KMO 
index greater than 0.60 and the p-value for the Bartlett’s test of sphe-
ricity less than 0.01 are defined suitable for PCA. 

Weight estimation process based on PCA is described as follows. 
Suppose X is the input standardized n × p matrix with n observations and 
p variables. S is the n × p matrix with columns representing the principle 
components (PCs) extracted from X. C is the p × p principle component 
coefficients for X. The columns in S and C is arranged in descending 
order in terms of eigenvalues, eig. The explanatory ability of the i-th PC ei 
is calculated using: 

ei =
eigi∑p
i=1eigi

(2)  

where eigi is the i-th eigenvalue and the sum of ei is 1. The top m number 
of PCs should be selected to satisfy the criterion 

∑m
i ei ≥ β, where β is 

determined based on research requirements (β = 0.85 in this study). 
Thus, the importance of each variable could be acquired by the top m 
columns in C and e as: 

imi =

∑p
i
∑m

j Ci,jej
∑m

j ej
(3)  

where Ci,j is the element in matrix C in position (i,j). The final weight for 
the i-th variable wi is calculated using: 

wi =
imi

∑p
i imi

(4)  

with the sum of wi equals to 1. 
Entropy weighing method estimates indicator weights based on the 

disorder degree of an indicator, also referred to as information entropy. 
An indicator with higher information entropy is equivalent to its higher 

variation and greater contribution to the whole system, leading to a 
larger weight. Entropy information is the quantitative index denoting to 
this concept. The entropy information ej of the j-th indicator is computed 
using: 

ej = − k
∑m

i=1
pijln(pij) (5)  

where m is the total number of observations, and k = 1/ln(m). pij is the 
proportion of the i-th observation on the j-th indicator and is obtained 
by: 

pij =
Zij

∑m
i=1Zij

(6) 

Therefore, the weight for the i-th indicator wi can be acquired by: 

wi =
1 − ei

k −
∑

ei
(7) 

All the indicator weights were calculated from year 2000 to 2015, 
and the final weights of each indicator is obtained from the arithmetic 
means over the study period. 

2.2.4. EVI computation and classification 
The final ecological vulnerability index for each year during the 

study period is calculated as: 

EVI =
∑n

i
wgi × EVI sysi (8)  

where wgi and EVI sysi are the global weight and ecological vulnera-
bility of the i-th system, and n is the total number of systems. EVI sysi is 
acquired using: 

EVI sysi =
∑m

j
wli×Zi (9)  

where wli and Zi are the local weight and standardized data for the j-th 
indicator, respectively, and m is the total number of indicators in the i-th 
system. 

In order to achieve a basic generalization for the EV over the study 
area and provide more intuitive knowledge for decision making, EVI 
values are often graded into several categories showing the degree of the 
EV. In this study, Jenks natural breaks (Jenks, 1963) method is applied 
to classify continuous EVI values into five levels: potential 
(EVI ≤ − 0.83), light ( − 0.83 < EVI ≤ − 0.38), moderate 
( − 0.38 < EVI ≤ 0.02), heavy (0.02 < EVI ≤ 0.36), and very heavy 
(EVI > 0.36). 

3. Results 

3.1. Final weight to each indicator 

Table 3 shows the final global and local weights for each indicator 
and sub-system. The weights can reflect the significances of indicators or 
sub-systems in the whole EVI assessment framework. Based on the 
global weights of four sub-systems, the land resources sub-system plays 
the most important role with the highest weight. All five vegetation 
parameters establish similar significances and the total weight of vege-
tation parameters sums up to 0.2966, which indicates that vegetation is 
the dominant driver in EV across the QTP. More flourishing green 
vegetation is efficient in water and soil conservation and climate 
adjustment, leading to a higher ecological stability. The social economic 
sub-system, reflecting anthropic pressures on the environment, shows 
the least significance in the assessment framework. This is probably 
because the QTP is less explored by human beings and it is one of the 
least urbanized regions in the world. 
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3.2. Spatial patterns of EVI 

The distributions of continuous EVI and EVI levels are presented in 
Figs. 3 and 4, respectively. Throughout the study period, EVI values 
varied from − 2 to 1.5, with higher values indicating more vulnerable 
ecosystems. Generally, EVI increased from the eastern to the western 

QTP, with the highest values in northern Ngari prefecture, which may be 
resulted from low vegetation coverage, high altitudes, and severe 
climate conditions. Moreover, high EVI values also appeared around 
large cities including Lhasa and Xining. This may be caused by the un-
balanced economic development across the QTP, which was reflected in 
huge population and GDP in big cities and extremely low values over 
remote regions. Similar patterns of EVI distribution were spotted in 
Figs. 3 and 4. However, the southwestern regions of the QTP experi-
enced obvious EVI increase. Among all five levels, the moderate level 
experienced the greatest variations, while other categories shifted 
slightly within a small range. 

Fig. 5 shows the proportions of each EVI category from 2000 to 2015. 
The proportions of the EVI levels showed stable annual variations. Over 
the study period, regions with “heavy” vulnerability accounted for the 
largest proportion over 30%, while regions with “potential” vulnera-
bility accounted for the least proportion less than 10%. Both “potential” 
and “very heavy” categories experienced a growing trend. Due to re-
gions with “moderate”, “heavy”, and “very heavy” vulnerabilities 
accounted for almost 80% of the entire study area, the EVI level across 
the QTP can be defined as “heavy”. Therefore, actions should be taken 
immediately in construction of ecological security barriers of the QTP 
environment. 

3.3. Temporal patterns of EVI 

Mann-Kendall (MK) trend test (Forthofer and Lehnen, 1981; Mann, 
1945; Williamson et al., 2015; Yang et al., 2018; Yuan et al., 2007) was 
performed on continuous EVI values from year 2000 to 2015 to identify 

Table 3 
Final weights for each variable.  

Systems Global 
Weight (wgi)

Indicators Local 
Weight (wli)

Overall 
Weights 

Land Resources 0.3391 LAI  0.1719  0.0583 
FVC  0.1758  0.0596 
GPP  0.1752  0.0594 
NDVI  0.1760  0.0597 
FAPAR  0.1756  0.0596 
LULC  0.1255  0.0426 

Hydro 
Meteorology 

0.2697 ET  0.1418  0.0382 
Albedo  0.2128  0.0574 
Precipitation  0.1164  0.0314 
Temperature  0.2653  0.0716 
distance to 
water  

0.2637  0.0711 

Topography 0.2583 Elevation  0.4231  0.1093 
Slope  0.3241  0.0837 
Aspect  0.2529  0.0653 

Social 
Economics 

0.1329 distance to 
roads  

0.0880  0.0117 

Population  0.4652  0.0618 
GDP  0.4468  0.0594  

Fig. 3. Continuous EVI distributions in (a) 2000 and (b) 2015.  

Fig. 4. EVI level distributions in (a) 2000 and (b) 2015.  
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regions where significant EVI happened (Fig. 6). The significance level 
of 0.05 was adopted, which indicated the null hypothesis of no trend 
should be rejected when the standard normal test statistic |Z| >1.96. 
Regions with significant increasing vulnerability mainly distributed in 
the western parts of the QTP, accounted for 10.43% of the total study 
area. Regions with significant decreasing vulnerability occupied 7.38% 
of the total area, mostly distributed in Qinghai province, northeastern of 
the study area. Tibet was suffering from serious deteriorate in EV, 
meanwhile, EV in Qinghai was significantly reduced. This is in accor-
dance with the vulnerability assessment in mainland China performed 
by Zhao et al. 2018, which indicates Tibet is the most vulnerable 
province in mainland China, and Qinghai is the second with slightly 
lower vulnerability than Tibet. Generally, Tibet has higher altitude, 
lower temperature and precipitation compared to that of Qinghai, which 
makes environment in Tibet more fragile. 

In the early 21st century, the State Council and other departments of 
Chinese government implemented a series of ecological environmental 
protection programs to construct the ecological security barriers of the 
QTP. The major programs and their corresponding times of approval are 
listed in Table 4. A number of eco-environmental protection and 

restoration projects were carried out under these programs. Considering 
the lag between approval, conduction, and effects showing of such 
programs, the year 2007 was selected as a break point to divide the study 
period into two periods representing before and after the implementa-
tion of eco-environmental projects. Therefore, MK trend analysis was 
performed respectively from 2000 to 2007 and from 2008 to 2015 to 
discover the temporal change patterns of EVI (Fig. 7). During these two 
periods, area with significantly increased EVI accounted for 6.22% and 
3.14% of the total area, and regions with significantly decreased EVI 
accounted for 3.52% and 3.98%, respectively. The results may be 
inferred that the environment vulnerability of the QTP has been reduced 
generally. Specifically, a greater area experienced increasing ecological 
vulnerability during the first period, while more regions went through 

Fig. 5. Proportions of each EVI category from 2000 to 2015.  

Fig. 6. Regions with no significant EVI changes (in yellow), significant 
increasing EVI (in red) and significant decreasing EVI (in green) from 2000 to 
2015. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 4 
Major programs for constructing ecological security barriers of the QTP.  

Times of 
approval 

Major Programs 

2005 General Plan for Ecological Conservation and Construction of 
Sanjiangyuan Nature Reserve, Qinghai Province 

2007 Ecological Environment Protection and Comprehensive 
Controlling Plan of Qinghai Lake Basin 

2009 Protection and Construction of Ecological Security Barrier Plan in 
Tibet (2008–2030) 

2011 Regional Ecological Construction and Environmental Protection 
Plan of Qinghai-Tibetan Plateau (2011–2030)  

Fig. 7. MK trend analyses during the period from (a) 2000 to 2007; (b) 2008 
to 2015. 
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decreasing vulnerability during the second period after the eco- 
environmental projects were carried out. The changing trend on cen-
tral and eastern regions of the QTP was transformed from significant 
increasing to decreasing, indicating the increasing ecological vulnera-
bility trend during the first period have been successfully terminated 
and turned to a decreasing trend after the conduction of eco- 
environmental projects. There were also small proportions of areas, 
mainly located on the southeastern of QTP, suffering from the opposite 
trends which were changed from significantly decreasing to increasing 
ecological vulnerability. The reasons should be further studied using 
high-resolution remote sensing data. 

Fig. 8 shows the percentages of areas with different EVI changing 
trends per administrative prefecture. Generally, a certain prefecture 
underwent either significant EVI growth or declination. More than 20% 
area of Kizilsu Kirghiz, Lhasa, and Ngari experienced EVI growth, 
Shannan and Xigaze were following next, with almost 20% of the area 
suffering from significantly increasing ecological vulnerabilities. These 
prefectures are mainly distributed in Tibet except for Kizilsu Kirghiz, 
partly located on the far end tail of the QTP, belongs to Xinjiang. In 
Haidong, Hainan and Zhangye, around 30% area went through signifi-
cant declination in vulnerability, with barely no significant EVI growth. 
Prefectures and cities located on the southwestern of the QTP were 
under considerable increasing vulnerabilities in ecological environment, 
while the vulnerabilities over the northeastern QTP were greatly 
reduced, indicating increasing ecological capacity and stability. 

4. Discussion 

4.1. The spatio-temporal patterns of EVI in the QTP 

The overall ecological vulnerability level of the QTP can be evalu-
ated as “heavy”, since it occupies the largest area proportions over 30% 
and the area proportion of “moderate”, “heavy”, and “very heavy” levels 
account for almost 80% over the study period (Fig. 5). Spatial distri-
butions of EVI in the QTP establish a remarkable pattern with increasing 

vulnerability from eastern to western regions, in accordance with the 
distribution of forest, shrub, alpine grassland, alpine meadow and alpine 
desert ecosystems. The southeastern QTP has the slightest ecological 
vulnerability, even though this region has steep slopes which increase 
the risks for mountain hazards. The warm and humid air from Pacific is 
transported up the river valleys, bringing in the warm climate and 
relatively high precipitations of 300 mm to 600 mm. Moreover, this 
climate condition boosts vegetation growth and production, leading to a 
less vulnerable ecological environment. Ngari Prefecture, located on the 
southwestern boundary of mainland China, is suffering from the highest 
ecological vulnerability in the QTP. The annual precipitation in Ngari, 
ranging from 140 mm to 320 mm, is relatively low. In addition, the high 
altitudes, accompanied by low temperatures, can lead to its bare and 
sparsely vegetated land cover, which is highly vulnerable to natural and 
anthropic pressures. 

With regard to the temporal patterns established by the trend ana-
lyses, the ecological vulnerability in Qinghai province experienced more 
evident reduction compared with that of the Tibet, indicating Qinghai 
province has higher resilience to natural and anthropic pressures 
compared with Tibet. Based on EVI trend analyses before and after the 
implementation of eco-environmental projects, it can also be inferred 
that the conduction of such projects helps to ease the increasing trends 
and enhances the decreasing trends of EV. This indicates that eco- 
environmental protection projects were indeed effectively in ecolog-
ical restoration of the QTP. Moreover, since eco-environmental conser-
vation and construction plans for Qinghai are adopted earlier, and the 
ecological environment of Qinghai are more helpful for vegetation 
growth with lower elevation and better hydrology conditions, eco- 
environmental projects are more likely to achieve good results in 
Qinghai than Tibet. 

4.2. Driving forces of EVI in the QTP 

According to the weights presented in Table 3, the land resources is 
serving as the most important sub-system for EVI in the QTP, while 

Fig. 8. Percentages of EV changing trends in 28 prefectures.  
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social economics sub-system accounts for the least significance. The 
prosperity of green vegetation is the dominant driving force among all 
selected indicators due to its ecosystem functions in water and soil 
conservation, biodiversity and climate adjustment. Climate factors, 
including temperature, precipitation, albedo are basic environmental 
factors influencing vegetation dynamics (Zhu et al., 2016). Temperature 
and albedo are more important in determining the ecological vulnera-
bility. In addition, distance to waterway is also an important indicator 
since water availability is crucial for ecological stability. Moreover, to-
pology factors are the characterizations of the Earth’s internal forces. 
Elevation and slope are evaluated as the most influential factors in this 
sub-system in that temperature drops with the increasing of altitude, and 
steep slopes are more likely to bring in mountain hazards. For social 
economics, population is the most significant driver, since it directly 
reflects the involvement of human beings. However, under the severe 
natural condition for human lives, the QTP is less populated compared to 
other regions in the world. Local governments have also taken controls 
in urbanization, land exploitation, and tourism development in pro-
tecting the QTP from anthropic pressures. Therefore, the social eco-
nomic indicators weight less in the EVI framework. In general, green 
vegetation, elevation, slope, and temperature are the most dominant 
drivers causing the ecological vulnerability in the QTP. 

Therefore, the eco-environmental projects conducted by the Chinese 
government to increase the green vegetation coverage in the QTP is 
beneficial for ecological stability. Many projects to restore green vege-
tation by planting trees were carried out during recent years. However, 
based on ground survey, trees planted in Qinghai have an overall greater 
survival rates than that of Tibet. On the Tibet Plateau, some trees were 
dead a year or two after their plantation due to the severe hydrological 
and meteorological conditions. Under this situation, Tibet government is 
cultivating trees and other species of vegetation suitable for local envi-
ronment with great effort in order to raise survival rates of vegetations 
and enhance the stabilities of the ecological environment. Spatio- 
temporal analyses of EVI patterns serves as an effective tool in envi-
ronmental management and decision making, and the details of eco- 
environment projects can be continuously investigated and revised by 
local government. 

4.3. Advantages and limitations of the proposed method 

This study provides an objective and automatic framework for EV 
assessment and analyses spatial and temporal distribution characteris-
tics over the QTP. The framework is effective in integrating indicators 
representing natural and anthropic impacts for EV assessment. One 
advantage of this study is that it introduced sampling adequacy tests to 
determine the more appropriate weighting approach in generating re-
sults with higher credibility. Previous studies evaluating EV across the 
QTP mostly utilizes subjective weighting methods based on expert 
opinions (Wang et al., 2008, 2010). However, Moldan and Bilharz 
(1997) points out it is best to control the maximum number of indicators 
to 10–12 in that more indicators introduce cognitive stress in the ex-
perts. The improved weighting approach also accelerates the weighting 
process without the expert consulting. Therefore, the improved objec-
tive weighting approach is better for this study in dealing with multiple 
indicators and effectively estimating indicator weights based on the 
intrinsic features of the indicators compared with subjective methods. In 
addition, this study analyzed the spatio-temporal EV patterns from 2000 
to 2015 and identified the most vulnerable regions, which was seldom 
provided by previous researches. 

However, there are also some limitations of this study. First, aggre-
gating the indicators using an additive method has some drawbacks. 
Theoretically, to use the additive or multiplicative approach, indicators 
should be independent of one another and the system should be 
completely understood, which might never be satisfied in the real situ-
ation (El-Zein and Tonmoy, 2015). Therefore, the merit of the results 
drawn from these methods might be limited. More appropriate 

approaches should be taken into consideration in future studies. Second, 
the objective method determines the indicator weights based on the 
structure of data, which may not necessarily in accordance with the 
actual importance of a given indicator towards measuring EV (Hinkel, 
2011; Tonmoy et al., 2014). Therefore, subject weighting method can be 
applied when the ecosystem is well understood. Third, the QTP is a 
relatively large region for EV assessment in that the ecosystem processes 
are hard to be fully identified. Future studies will be conducted over 
local regions with significantly increasing vulnerabilities to further 
explore the causations of the vulnerable ecosystems. Lastly, due to the 
limitations of data availability, this study did not involve more aspects in 
livestock migrations and human activities like grazing, which will be 
taken into consideration for future studies. 

5. Conclusion 

This study developed an objective and automatic framework for 
evaluating ecological vulnerability over the Qinghai-Tibetan Plateau 
under the pressure of mountain hazards, ecosystem degradation, and 
human economic activities, and analyzed the spatial distribution and 
temporal variation patterns of EVI from 2000 to 2015. The proposed EV 
assessment framework synthetically reflected natural conditions and 
anthropic activities across the QTP and provided an objective and 
automatic method incorporating indicator weighting, EVI calculation 
and categorizing procedures. The framework introduced sampling ade-
quacy tests in determining appropriate weighting approach to produce 
valid results. Spatio-temporal patterns established by this study indi-
cated that the QTP was suffering from heavy ecological vulnerability. 
Spatial distribution of EVI established similar patterns over the study 
period, with ecological vulnerabilities increasing from eastern to west-
ern regions. EVI over the QTP was highly influenced by vegetation 
conditions, elevation and temperature. Temporal changes were not 
huge, with 10.43% and 7.38% of the total area experienced significant 
increased and decreased ecological vulnerability, respectively. 
Furthermore, after the conduction of eco-environmental projects, the 
increasing trend of ecological vulnerabilities was greatly reduced and 
more regions went through significant decreasing vulnerabilities. For 
future study, areas with significant increasing EVIs should be investi-
gated with higher spatial resolution data. 
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